一位老木匠需要将一根长的木棒切成N段。每段的长度分别为L1,L2,......,LN(1 <= L1,L2,…,LN <= 1000,且均为整数)个长度单位。我们认为切割时仅在整数点处切且没有木材损失。
木匠发现,每一次切割花费的体力与该木棒的长度成正比,不妨设切割长度为1的木棒花费1单位体力。例如:若N=3,L1 = 3,L2 = 4,L3 = 5,则木棒原长为12,木匠可以有多种切法,如:先将12切成3+9.,花费12体力,再将9切成4+5,花费9体力,一共花费21体力;还可以先将12切成4+8,花费12体力,再将8切成3+5,花费8体力,一共花费20体力。显然,后者比前者更省体力。
那么,木匠至少要花费多少体力才能完成切割任务呢?
Input
第1行:1个整数N(2 <= N <= 50000) 第2 - N + 1行:每行1个整数Li(1 <= Li <= 1000)。
Output
输出最小的体力消耗。
Input示例
3 3 4 5
Output示例
19
#include<bits/stdc++.h>
using namespace std;
priority_queue<int,vector<int>,greater<int> >qq;
int main()
{
ios::sync_with_stdio(false);
int n,i,j,ans,t1,t2,t;
cin>>n;
while(n--) {
cin>>t;
qq.push(t);
}
ans=0;
while(!qq.empty()) {
t1=qq.top();
qq.pop();
if(qq.empty()) break;
t2=qq.top();
qq.pop();
ans+=t1+t2;
qq.push(t1+t2);
}
cout<<ans<<endl;
return 0;
}