给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
import java.io.*;
import java.util.Arrays;
public class Main{
public static void main(String[] args) throws IOException {//采用StreamTokenizer加快输入
StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter printWriter = new PrintWriter(new OutputStreamWriter(System.out));
in.nextToken();//读取下一个标记
int a = (int)in.nval,b = a;//nval读取double型,转换为整型
int [] c = new int[4];
boolean flag = false;
for (int i = 0; i < 4; i++) {
c[i] = a%10;
a /= 10;
if(i>0&&c[i-1]!=c[i]){
flag = true;//判断是否是相同的数字
}
}
if(!flag){
System.out.printf("%04d - %04d = 0000",b,b);
}else{
int m = 0, n = 0, num = b;
while(true){
for (int i = 0; i < 4; i++) {
c[i] = num%10;
num /= 10;
}
m = 0;
n = 0;
Arrays.sort(c);//默认由低到高排序
for (int i = 0; i < 4; i++) {
m += (int)Math.pow(10,i)*c[i];
n += (int)Math.pow(10,3-i)*c[i];
} //将较大的值赋给m,较小的赋值给n
num = m - n;
System.out.printf("%04d - %04d = %04d\n",m,n,num);
if(num==6174){
break;
}
}
}
}
}