题目描述
可以用字符串表示一个学生的出勤记录,其中的每个字符用来标记当天的出勤情况(缺勤、迟到、到场)。记录中只含下面三种字符:
‘A’:Absent,缺勤
‘L’:Late,迟到
‘P’:Present,到场
如果学生能够 同时 满足下面两个条件,则可以获得出勤奖励:
按总出勤 计,学生缺勤(‘A’)严格少于两天。
学生 不会 存在 连续 3 天或 连续 3 天以上的迟到(‘L’)记录。
给你一个整数 n ,表示出勤记录的长度(次数)。请你返回记录长度为 n 时,可能获得出勤奖励的记录情况 数量 。答案可能很大,所以返回对 109 + 7 取余 的结果。
示例1:
输入:n = 2
输出:8
解释:
有 8 种长度为 2 的记录将被视为可奖励:
“PP” , “AP”, “PA”, “LP”, “PL”, “AL”, “LA”, “LL”
只有"AA"不会被视为可奖励,因为缺勤次数为 2 次(需要少于 2 次)。
示例2:
输入:n = 1
输出:3
示例3:
输入:n = 10101
输出:183236316
题解:从dfs遍历到记忆数组再到dp
参考题解
part1 dfs
本质上来说是遍历所有情况
class Solution {
public:
int mod = 1000000007;
int dfs(int day, int n, int absent, int late){
if(day >= n){
return 1;
}
int ans = 0;
//present 随意插入 只需要day+1
ans = (ans + dfs(day+1, n, absent, 0)) % mod;
//absent最多只能有一个不然无奖励
if(absent < 1){
ans = (ans + dfs(day+1, n, 1, 0)) % mod;
}
//late 最多有连续的两个
if(late < 2){
ans = (ans +dfs(day + 1, n, absent, late+1)) %mod;
}
return ans;
}
int checkRecord(int n) {
return dfs(0, n, 0, 0);
}
};
part加一个memo数组 记录所有的状态
本质上就是剪枝
class Solution {
public:
int mod = 1000000007;
int dfs(int day, int n, int absent, int late, int memo[][2][3]){
if(day >= n){
return 1;
}
//如果当前状态已存在直接获取
if (memo[day][absent][late]!=0)
return memo[day][absent][late];
int ans = 0;
ans = (ans + dfs(day+1, n, absent, 0, memo)) % mod;
if(absent < 1){
ans = (ans + dfs(day+1, n, 1, 0, memo)) % mod;
}
if(late < 2){
ans = (ans +dfs(day + 1, n, absent, late+1, memo)) %mod;
}
memo[day][absent][late] = ans;
return ans;
}
int checkRecord(int n) {
int memo[n][2][3];
memset(memo, 0, sizeof(memo));
return dfs(0, n, 0, 0, memo);
}
};
part3 dp动态规划
难点 :考虑所有的情况不能漏
class Solution {
public:
int checkRecord(int n) {
int mod = 1000000007;
long dp[n][2][3];
memset(dp, 0, sizeof(dp));
dp[0][0][0] = 1;
dp[0][1][0] = 1;
dp[0][0][1] = 1;
for (int i=1;i<n;i++){
// 本次填入P,分成前一天累计了0个A和1个A两种情况
dp[i][0][0] = (dp[i - 1][0][0] + dp[i - 1][0][1] + dp[i - 1][0][2]) % mod;
dp[i][1][0] = (dp[i - 1][1][0] + dp[i - 1][1][1] + dp[i - 1][1][2]) % mod;
// 本次填入A,前一天没有累计A都能转移过来
// 这行可以与上面一行合并计算,为了方便理解,我们分开,下面会合并
dp[i][1][0] = (dp[i][1][0] + dp[i - 1][0][0] + dp[i - 1][0][1] + dp[i - 1][0][2]) % mod;
// 本次填入L,前一天最多只有一个连续的L,分成四种情况
dp[i][0][1] = dp[i - 1][0][0];
dp[i][0][2] = dp[i - 1][0][1];
dp[i][1][1] = dp[i - 1][1][0];
dp[i][1][2] = dp[i - 1][1][1];
}
long ans = 0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {
ans = (ans + dp[n - 1][i][j]) % mod;
}
}
return (int) ans;
}
};
part4 动态规划 + 降维I
class Solution {
int MOD = 1000000007;
public:
int checkRecord(int n) {
long dp[2][3];
memset(dp, 0, sizeof(dp));
// 初始值
dp[0][0] = 1;
dp[1][0] = 1;
dp[0][1] = 1;
for (int i = 1; i < n; i++) {
long newDp[2][3];
memset(newDp, 0, sizeof(newDp));
newDp[0][0] = (dp[0][0] + dp[0][1] + dp[0][2]) % MOD;
// 把方法三中间两个一样的状态合并为一行
newDp[1][0] = (dp[1][0] + dp[1][1] + dp[1][2] + dp[0][0] + dp[0][1] + dp[0][2]) % MOD;
newDp[0][1] = dp[0][0];
newDp[0][2] = dp[0][1];
newDp[1][1] = dp[1][0];
newDp[1][2] = dp[1][1];
memcpy(dp,newDp,sizeof(newDp));
}
long ans = 0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {
ans = (ans + dp[i][j]) % MOD;
}
}
return (int) ans;
}
};