python画图 调整坐标轴标签位置 ylabel/xlabel位置 python pyplot 坐标轴交叉点 文本竖着排列 plt.xlabel 竖着 pyplot折线图横坐标竖着显示

本文介绍了如何在Python的matplotlib库中调整坐标轴标签的位置,包括使用`xlabel`和`ylabel`设置标签,并利用`annotate`函数实现标签的特殊定位。同时,展示了如何设置坐标轴交叉点,例如根据数据的分位数来定位。此外,还探讨了创建竖直的`xlabel`的方法。这些技巧对于提升图表的可读性和美观性非常有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

调整坐标轴标签位置 ylabel/xlabel位置

更新:评论区的伙伴给了更好的解决方案
参考链接:https://blog.csdn.net/liujingwei8610/article/details/126900624
其中参数x和y是比例距离。

plt.xlabel('\n'.join(list(x)), verticalalignment='center', x=1.02)
plt.ylabel(y, rotation=0, horizontalalignment='center', y=1.03)

在这里插入图片描述

一直找不到,于是走个歪门邪道。。。
plt.annotate本来是用来标记的(比如标记下图中的“异常值和箭头”

from matplotlib import pylot as plt
plt.annotate("异常值", (-7,63), xycoords='data',xytext=(-20, 55),arrowprops=dict(arrowstyle='->'),fontsize=15) 
plt.annotate("异常值", (63,-8), xycoords='data',xytext=(45, -8),arrowprops=dict(arrowstyle='->'),fontsize=15)
plt.annotate("y标签", (10,67), xycoords='data',xytext=(10,67),fontsize=15)
plt.annotate("x标签", (67,5), xycoords='data',xytext=(67,5),fontsize=15)

在这里插入图片描述

坐标轴交叉点
# 划分四象限,以前top20%分位数划分
ax.spines['bottom'].set_position(('data', a[y].describe(percentiles=[0.8])['80%']*100))
ax.spines['left'].set_position(('data', a[x].describe(percentiles=[0.8])['80%']))

在这里插入图片描述

plt.xlabel 竖着

plt.xlabel 纵向label、plt.xlabel 纵向标题、plt.xlabel 纵向
参考链接:https://blog.csdn.net/dongfuguo/article/details/118706468

plt.xlabel('\n'.join(list(x)))
为了深入理解和掌握matplotlib.pyplot在定制折线图坐标轴刻度间隔和范围的能力,推荐阅读《Python matplotlib.plot坐标轴刻度与范围设置教程》。这篇文章将引导你通过实例深入理解如何对坐标轴进行精细调整。 参考资源链接:[Python matplotlib.plot坐标轴刻度与范围设置教程](https://wenku.csdn.net/doc/6412b46ebe7fbd1778d3f92a?spm=1055.2569.3001.10343) 首先,了解matplotlib.pyplot中设置坐标轴刻度间隔的方法至关重要。使用`MultipleLocator`可以指定坐标轴上的刻度间隔。接下来,对于坐标轴范围的设置,可以使用`xlim()`和`ylim()`函数来分别设置x轴和y轴的显示范围。 下面是一个具体的步骤和代码示例,展示如何设置坐标轴的刻度间隔和范围: ```python import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator # 准备数据 x_values = list(range(11)) y_values = [x**2 for x in x_values] # 绘制折线图 plt.plot(x_values, y_values) # 设置标题和坐标轴标签 plt.title('Squares with Custom Ticks') plt.xlabel('Numbers') plt.ylabel('Squares') # 自定义坐标轴刻度间隔 plt.gca().xaxis.set_major_locator(MultipleLocator(1)) # 设置x轴的刻度间隔为1 plt.gca().yaxis.set_major_locator(MultipleLocator(10)) # 设置y轴的刻度间隔为10 # 扩展坐标轴范围 plt.xlim(0, 12) # 设置x轴范围为0到12 plt.ylim(0, 121) # 设置y轴范围为0到121 # 显示图表 plt.show() ``` 在这个例子中,我们创建了一个简单的折线图显示了0到10的数字的平方值。通过使用`MultipleLocator`,我们为x轴设置了每隔1单位显示一个刻度,为y轴设置了每隔10单位显示一个刻度。此外,我们还使用`xlim()`和`ylim()`函数扩展了坐标轴的范围,使得图表更加清晰,展示了更多的数据细节。 在完成对刻度间隔和范围的定制之后,你可以通过《Python matplotlib.plot坐标轴刻度与范围设置教程》来学习更多高级功能,比如如何调整刻度标签的方向和格式、设置次刻度、以及如何根据不同数据类型调整坐标轴显示样式。掌握这些技能将使你的数据可视化工作更加专业和高效。 参考资源链接:[Python matplotlib.plot坐标轴刻度与范围设置教程](https://wenku.csdn.net/doc/6412b46ebe7fbd1778d3f92a?spm=1055.2569.3001.10343)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值