南开大学2014年高等代数部分试题解答

南开大学2014年高等代数部分试题解答(本答案来自于张祖锦老师博客)

一、设$n$阶行列式$
\left|\begin{array}{cccc}
{{a_{11}}} & {{a_{12}}} & \cdots & {{a_{1n}}} \\
{{a_{21}}} & {{a_{22}}} & \cdots & {{a_{2n}}} \\
\vdots & \vdots & & \vdots \\
{{a_{n1}}} & {{a_{n2}}} & \cdots & {{a_{nn}}}
\end{array}\right|
$$=1$,且满足${{a}_{ij}}=-{{a}_{ji}},i,j=1,2,\cdots ,n$,对任意$x$,求$n$阶行列式

$
\left|\begin{array}{cccc}
{{a_{11}}}+x & {{a_{12}}}+x & \cdots & {{a_{1n}}}+x \\
{{a_{21}}}+x & {{a_{22}}}+x & \cdots & {{a_{2n}}}+x \\
\vdots & \vdots & & \vdots \\
{{a_{n1}}}+x & {{a_{n2}}}+x & \cdots & {{a_{nn}}}+x
\end{array}\right|
$

解:设$A={{({{a}_{ij}})}_{n\times n}},e=\underbrace{(1,\cdots ,1)}_{n个},B={{({{a}_{ij}}+x)}_{n\times n}}$

$
\left| B \right|=\left|\begin{array}{cccc}
1 & x & \cdots & x \\
0 & {{a_{11}}}+x & \cdots & {{a_{1n}}}+x \\
\vdots & \vdots & & \vdots \\
0 & {{a_{n1}}}+x & \cdots & {{a_{nn}}}+x
\end{array}\right|
$$
\left|\begin{array}{cccc}
1 & x & \cdots & x \\
-1 & {{a_{11}}} & \cdots & {{a_{1n}}} \\
\vdots & \vdots & & \vdots \\
-1 & {{a_{n1}}} & \cdots & {{a_{nn}}}
\end{array}\right|
$$
\left|\begin{array}{cccc}
1 & {x{e^T}} \\
-e & A
\end{array}\right|
$

又由

$
\left(\begin{array}{cccc}
1 & { - x{e^T}{A^{ - 1}}} \\
0 & E
\end{array}\right)
$$
\left(\begin{array}{cccc}
1 & {x{e^T}} \\
-e & A
\end{array}\right)
$$
=\left(\begin{array}{cccc}
{1 - x{e^T}{A^{ - 1}}e} & 0 \\
-e & A
\end{array}\right)
$

于是

\[\left| B \right|=(1-x{{e}^{T}}{{A}^{-1}}e)\cdot \left| A \right|=1-x\sum\limits_{i,j}{{{({{A}^{-1}})}_{ij}}}=1\]

其中最后一步是因为$A$反对称,则${{A}^{-1}}$反对称

五、设$A$为$s\times n$矩阵,证明:

$s-rank({{E}_{s}}-A{{A}^{T}})=n-rank({{E}_{n}}-{{A}^{T}}A)$

证明:由$
\left(\begin{array}{cccc}
{{E_s}} & -A \\
0 & {{E_n}}
\end{array}\right)
$$
\left(\begin{array}{cccc}
{{E_s}} & A \\
{{A^T}} & {{E_n}}
\end{array}\right)
$$
\left(\begin{array}{cccc}
{{E_s}} & 0 \\
{ - {A^T}} & {{E_n}}
\end{array}\right)
$$
=\left(\begin{array}{cccc}
{{E_s} - A{A^T}} & 0 \\
0 & {{E_n}}
\end{array}\right)
$

$
\left(\begin{array}{cccc}
{{E_s}} & 0 \\
{ - {A^T}} & {{E_n}}
\end{array}\right)
$$
\left(\begin{array}{cccc}
{{E_s}} & A \\
{{A^T}} & {{E_n}}
\end{array}\right)
$$
\left(\begin{array}{cccc}
{{E_s}} & -A \\
0 & {{E_n}}
\end{array}\right)
$$
=\left(\begin{array}{cccc}
{{E_s}} & 0 \\
0 & {{E_n} - {A^T}A}
\end{array}\right)
$

于是

$rank({{E}_{s}}-A{{A}^{T}})+n=rank({{E}_{n}}-{{A}^{T}}A)+s$

$s-rank({{E}_{s}}-A{{A}^{T}})=n-rank({{E}_{n}}-{{A}^{T}}A)$

六、设$A$为对称矩阵,存在线性无关的向量${{x}_{1}},{{x}_{2}}$,使得$x_{1}^{'}A{{x}_{1}}>0,x_{2}^{'}A{{x}_{2}}<0$,证明:存在线性无关的向量${{x}_{3}},{{x}_{4}}$,使得${{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}}$线性相关,且$x_{3}^{'}A{{x}_{3}}=x_{4}^{'}A{{x}_{4}}=0$

证明:设$f(x,y)={{x}^{T}}Ay$,则由题意知:

$f({{x}_{1}},{{x}_{1}})>0,f({{x}_{2}},{{x}_{2}})<0(1)$

考虑二次方程

${{t}^{2}}f({{x}_{1}},{{x}_{1}})+2tf({{x}_{1}},{{x}_{2}})+f({{x}_{2}},{{x}_{2}})=0(2)$

由(1)知其判别式

$\Delta =4{{f}^{2}}({{x}_{1}},{{x}_{2}})-4f({{x}_{1}},{{x}_{1}})f({{x}_{2}},{{x}_{2}})>0$

于是方程有两个不同的实根${{t}_{1}},{{t}_{2}}({{t}_{1}}\ne {{t}_{2}})$,令

${{x}_{3}}={{t}_{1}}{{x}_{1}}+{{x}_{2}},{{x}_{4}}={{t}_{2}}{{x}_{1}}+{{x}_{2}}$

由(2)知

$f({{x}_{3}},{{x}_{3}})=f({{x}_{4}},{{x}_{4}})=0$

且易知${{x}_{3}},{{x}_{4}}$线性无关,但${{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}}$线性相关

七、设$\delta ,\tau $为线性变换且$\delta $有$n$个不同的特征值,证明:若$\delta \tau =\tau \delta $,则$\tau $可由

$I,\delta ,{{\delta }^{2}},\cdots ,{{\delta }^{n-1}}$线性表出,其中$\delta $为恒等变换。

证明:设$\delta $有$n$个不同的特征值${{\lambda }_{1}},{{\lambda }_{2}},\cdots ,{{\lambda }_{n}}$,相应的特征向量为${{\varepsilon }_{1}},{{\varepsilon }_{2}},\cdots ,{{\varepsilon }_{n}}$

于是${{\varepsilon }_{1}},{{\varepsilon }_{2}},\cdots ,{{\varepsilon }_{n}}$线性无关,又由$\delta \tau =\tau \delta $,可知$\delta \tau ({{\varepsilon }_{i}})=\tau \delta ({{\varepsilon }_{i}})={{\lambda }_{i}}\tau ({{\varepsilon }_{i}})$

于是$\tau ({{\varepsilon }_{i}})$要么为$0$,要么为$\delta $属于${{\lambda }_{i}}$的特征向量,总之,我们有$\tau ({{\varepsilon }_{i}})={{k}_{i}}{{\varepsilon }_{i}}$

注意到线性方程组

$
\left(\begin{array}{cccc}
1 & {{\lambda _1}} & \cdots & {\lambda _1^{n - 1}} \\
1 & {{\lambda _2}} & \cdots & {\lambda _2^{n - 1}} \\
\vdots & \vdots & & \vdots \\
1 & {{\lambda _n}} & \cdots & {\lambda _n^{n - 1}}
\end{array}\right)
$$
\left(\begin{array}{cccc}
{a_0} \\
{a_1} \\
\vdots \\
{a_n-1}
\end{array}\right)
$$
=\left(\begin{array}{cccc}
{k_1} \\
{k_2} \\
\vdots \\
{k_n}
\end{array}\right)
$

有唯一解${{a}_{i}}={{l}_{i}},0\le i\le n-1$,而

\[\tau({{\varepsilon }_{i}})={{k}_{i}}{{\varepsilon }_{i}}=\left[ \sum\limits_{j=0}^{n-1}{{{l}_{j}}\lambda_{i}^{j}}\right]{{\varepsilon }_{i}}=\sum\limits_{j=0}^{n-1}{{{l}_{j}}{{\delta }^{j}}}({{\varepsilon }_{i}}),\forall i\]

于是

$\tau =\sum\limits_{j=0}^{n-1}{{{l}_{j}}{{\delta }^{j}}}$

八、已知$f(x)$是$A$的特征多项式,存在互素且次数分别为$p,q$的多项式$g(x),h(x)$且

$f(x)=g(x)h(x)$,求证:

$rankg(A)=q,rankh(A)=p$ 。

证明:设$g(x)=a\prod\limits_{i=1}^{s}{{{(\lambda -{{\lambda }_{i}})}^{{{m}_{i}}}}},h(x)=b\prod\limits_{j=1}^{t}{{{(\lambda -{{\mu }_{j}})}^{{{n}_{j}}}}}$

$\sum\limits_{i=1}^{s}{{{m}_{i}}}=p,\sum\limits_{j=1}^{t}{{{n}_{j}}}=q$

由于$(g(x),h(x))=1$,则${{\lambda }_{i}}\ne {{\mu }_{j}}$

$f(x)=g(x)h(x)=ab\cdot \prod\limits_{i=1}^{s}{{{(\lambda -{{\lambda }_{i}})}^{{{m}_{i}}}}}\prod\limits_{j=1}^{t}{{{(\lambda -{{\mu }_{j}})}^{{{n}_{j}}}}}$

为$A$的特征多项式,而有直和分解

$V=\oplus _{i=1}^{s}{{V}_{i}}\oplus \oplus _{j=1}^{t}{{W}_{j}}$

其中

${{V}_{i}}=\{x\in V:{{(A-{{\lambda }_{i}}E)}^{{{m}_{i}}}}x=0\},{{W}_{j}}=\{x\in V:{{(A-{{\mu }_{j}}E)}^{{{n}_{j}}}}x=0\}$

且\[\dim{{V}_{i}}={{m}_{i}},\dim{{W}_{j}}={{n}_{j}}\],为证此题,仅需证明

\[\oplus _{i=1}^{s}{{V}_{i}}=\{h(A)x=0;x\in V\},\oplus _{j=1}^{t}{{W}_{j}}=\{g(A)x=0;x\in V\}\]

由于

$rankh(A)=\sum\limits_{i=1}^{s}{{{m}_{i}}}=p,rankg(A)=\sum\limits_{j=1}^{t}{{{n}_{j}}}=q$

不是一般性,仅需证明

\[\oplus _{i=1}^{s}{{V}_{i}}=\{h(A)x=0;x\in V\}\equiv U\]

一方面:对任意的

$x\in {{V}_{i}}\Rightarrow {{(A-{{\lambda }_{i}}E)}^{{{m}_{i}}}}x=0\Rightarrow g(A)x=0$

$\Rightarrow x=u(A)g(A)x+v(A)h(A)x=v(A)h(A)x=h(A)v(A)x\in U$

另一方面,对任意的

$x\in U\Rightarrow x=h(A)y\Rightarrow x=h(A)({{v}_{1}}+\cdots +{{v}_{s}}+{{w}_{1}}+\cdots +{{w}_{t}})$

$=h(A){{v}_{1}}+\cdots +h(A){{v}_{s}}\in \oplus _{i=1}^{s}{{V}_{i}}$

九、已知$A,B$都是反对称矩阵,且$A$可逆,求证:

$\left| {{A}^{2}}-B \right|>0$

证明:由${{A}^{T}}=-A$,则$\left| A \right|=\left| {{A}^{T}} \right|={{(-1)}^{n}}\left| A \right|$

由$A$可逆,于是$n$为偶数

而${{A}^{T}}A$正定,则存在可逆矩阵$P$,使得${{P}^{T}}{{A}^{T}}AP=E$,于是

$\left| {{P}^{T}} \right|\cdot \left| {{A}^{2}}-B \right|\cdot \left| P \right|=\left| {{P}^{T}} \right|\cdot \left| -{{A}^{T}}A-B \right|\cdot \left| P \right|$

$=\left| {{P}^{T}} \right|\cdot \left| {{A}^{T}}A+B \right|\cdot \left| P \right|$

$=\left| E+{{P}^{T}}BP \right|$

而${{P}^{T}}BP$也是反对称矩阵,则存在可逆矩阵$Q$,使得

$
{Q^T}{P^T}BPQ = \left(\begin{array}{cccc}
D & & & \\
& D & & \\
& & \ddots & \\
& & & 0
\end{array}\right)
$,$
D = \left(\begin{array}{cccc}
0 & 1\\
{ - 1} & 0
\end{array}\right)
$

于是

$\left| {{Q^T} \cdot {P^T}} \right| \cdot \left| {{A^2} - B} \right| \cdot \left| {P \cdot Q} \right| = $$
\left| {E +\left(\begin{array}{cccc}
D & & & \\
& D & & \\
& & \ddots & \\
& & & 0
\end{array}\right)}\right|
$

$={{2}^{r}}$($r$为$
\left(\begin{array}{cccc}
D & & & \\
& D & & \\
& & \ddots & \\
& & & 0
\end{array}\right)
$中$D$的个数)

$>0$

转载于:https://www.cnblogs.com/Colgatetoothpaste/p/3675273.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值