武汉大学2010年数学分析试题解答

武汉大学2010年数学分析试题解答

一、 1、解 $\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln {{\left( 1+x \right)}^{\frac{1}{x}}}-1}{x}$$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{\ln \left( 1+x \right)}{x}-1}{x}$$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln \left( 1+x \right)-x}{{{x}^{2}}}$$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{1}{1+x}-1}{2x}$$=-\frac{1}{2}\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{1+x}=-\frac{1}{2}$.

2、  解 $\sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+1}}\le \sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{k}}}\le \sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{n}}}$,

$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+1}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+1}\sum\limits_{k=1}^{n}{\frac{1}{n}{{2}^{{}^{k}/{}_{n}}}}=\int_{0}^{1}{{{2}^{x}}dx}$$=\left. \left( \frac{1}{\ln 2}{{2}^{x}} \right) \right|_{0}^{1}=\frac{1}{\ln 2}$,

$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{n}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+\frac{1}{n}}\sum\limits_{k=1}^{n}{\frac{1}{n}{{2}^{{}^{k}/{}_{n}}}}=\int_{0}^{1}{{{2}^{x}}dx}=\frac{1}{\ln 2}$,所以$\underset{n\to \infty }{\mathop{\lim }}\,\left( \frac{{{2}^{{}^{1}/{}_{n}}}}{n+1}+\frac{{{2}^{{}^{2}/{}_{n}}}}{n+\frac{1}{2}}+\cdots +\frac{{{2}^{{}^{n}/{}_{n}}}}{n+\frac{1}{n}} \right)=\frac{1}{\ln 2}$.

3、  解:

$\int{\frac{dx}{1+\tan x}}=\int{\frac{\cos x}{\cos x+\sin x}}dx=\frac{1}{2}\int{\frac{\left( \cos x+\sin x \right)+\left( \cos x-\sin x \right)}{\cos x+\sin x}}dx$

$=\frac{1}{2}x+\frac{1}{2}\ln \left| \sin x+\cos x \right|+C$.

4、 解 :

设$G(x,\alpha )=\int\limits_{x-2\alpha }^{x+3\alpha }{\cos ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy$,则

$F(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{dx\int\limits_{x-2\alpha }^{x+3\alpha }{\cos ({{x}^{2}}}}+{{y}^{2}}+{{\alpha }^{2}})dy=\int\limits_{0}^{{{e}^{\alpha }}}{G(x,\alpha )dx}$

于是

$F'(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{{{G}_{\alpha }}(x,\alpha )dx+{{e}^{\alpha }}}G({{e}^{\alpha }},\alpha )$

${{G}_{\alpha }}(x,\alpha )=-2\alpha \int\limits_{x-2\alpha }^{x+3\alpha }{\sin ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy+3\sin (2{{x}^{2}}+9{{\alpha }^{2}}+6ax)+2\sin (2{{x}^{2}}+4{{\alpha }^{2}}-4\alpha x)$于是

$F'(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{[-2\alpha \int\limits_{x-2\alpha }^{x+3\alpha }{\sin ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy+3\sin (2{{x}^{2}}+9{{\alpha }^{2}}+6ax)+2\sin (2{{x}^{2}}+4{{\alpha }^{2}}-4\alpha x)]dx}$$+{{e}^{\alpha }}\int\limits_{{{e}^{\alpha }}-2\alpha }^{{{e}^{\alpha }}+3\alpha }{\cos ({{e}^{2\alpha }}}+{{y}^{2}}+{{\alpha }^{2}})dy$

5、 解 $\iiint\limits_{V}{{{e}^{x}}{{y}^{2}}{{z}^{3}}dxdydz}$$=\int_{0}^{1}{{{e}^{x}}dx\int_{0}^{x}{{{y}^{2}}dy\int_{0}^{xy}{{{z}^{3}}dz}}}$$=\int_{0}^{1}{{{e}^{x}}dx\int_{0}^{x}{{{y}^{2}}\frac{1}{4}{{x}^{4}}{{y}^{4}}dy}}$

$=\frac{1}{4}\frac{1}{7}\int_{0}^{1}{{{x}^{11}}{{e}^{x}}dx}=\frac{1}{28}\int_{0}^{1}{{{x}^{11}}{{e}^{x}}dx}$ $=1425600-\frac{7342285e}{14}$,(多次分部积)。

$I(m)=\int_{0}^{1}{{{x}^{m}}{{e}^{x}}dx}=e-mI(m-1) $ 。

二、证明

方法一(1)当 $a>\frac{1}{4}$时,${{x}_{1}}\ge 0$,${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$,

 因为$|{{x}_{n+1}}-{{x}_{n}}|=|\sqrt{a+{{x}_{n}}}-\sqrt{a+{{x}_{n-1}}}|$

$=\frac{1}{\sqrt{a+{{x}_{n}}}+\sqrt{a+{{x}_{n-1}}}}|{{x}_{n}}-{{x}_{n-1}}|$\le \frac{1}{2\sqrt{a}}|{{x}_{n}}-{{x}_{n-1}}|$,$n=2,3,\cdots$,

于是得压缩序列$\{{{x}_{n}}\}$是收敛的,设$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A$,显然$A\ge \sqrt{a}$;

在${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$两边令$n\to \infty $取极限得到$A=\sqrt{a+A}$,

从而${{A}^{2}}-A-a=0$,解得$A=\frac{1\pm \sqrt{1+4a}}{2}$,因为$A\ge \sqrt{a}$,故$A=\frac{1+\sqrt{1+4a}}{2}$ .

$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}$  ;

  (2)当 $0<a\le \frac{1}{4}$时${{x}_{1}}=\sqrt{a}$,${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$,

得${{x}_{n}}\ge \sqrt{a}$,${{x}_{2}}\ge {{x}_{1}}$,${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$,由此推出$\{{{x}_{n}}\}$单调递增,

$f(x)=\sqrt{a+x}$单调递增,令$A=\frac{1+\sqrt{1+4a}}{2}$,则有$f(A)=A$,

${{x}_{1}}<A=\frac{1+\sqrt{1+4a}}{2}$,由此得${{x}_{n}}<A=\frac{1+\sqrt{1+4a}}{2}$,

$\{{{x}_{n}}\}$单调递增有界,设$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A$,显然$A\ge \sqrt{a}$;

在${{x}_{n+1}}=\sqrt{a+{{x}_{n}}}$两边令$n\to \infty$取极限得到$A=\sqrt{a+A}$,

从而${{A}^{2}}-A-a=0$,解得$A=\frac{1\pm \sqrt{1+4a}}{2}$,因为$A\ge \sqrt{a}$,故\[A=\frac{1+\sqrt{1+4a}}{2}$ .

$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}$

方法二  令$A=\frac{1+\sqrt{1+4a}}{2}$,则有$A=\frac{1+\sqrt{1+4a}}{2}>1$,${{x}_{n+1}}^{2}=a+{{x}_{n}}$,${{A}^{2}}=a+A$,

从而$|{{x}_{n+1}}-A|=\frac{|{{x}_{n}}-A|}{{{x}_{n}}+A}\le \frac{1}{A}|{{x}_{n}}-A|\le \cdots \le \frac{1}{{{A}^{n}}}|{{x}_{1}}-A|$,

于是$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}$。

 

 

三、 证明 令$F(x)=xf(x) $,由积分中值定理,存在${{\xi }_{1}}\in \left( 0,\frac{1}{2} \right) $,使得

$f(2)=\int_{0}^{\frac{1}{2}}{xf\left( x \right)dx}=\frac{1}{2}{{\xi }_{1}}f({{\xi }_{1}})$,于是有$F(2)=2f(2)={{\xi }_{1}}f({{\xi }_{1}})=F({{\xi }_{1}})$,

由罗尔中值定理,得存在$\xi \in \left( 0,2 \right) $,使得${F}'(\xi )=0$,即 $f\left( \xi  \right)+\xi {f}'\left( \xi  \right)=0$  。

四、 ${{u}_{x}}=v+x{{v}_{x}}+y{\varphi }'\left( v \right){{v}_{x}}+{\psi }'\left( v \right){{v}_{x}}=v$,${{u}_{xx}}={{v}_{x}}$,${{u}_{xy}}={{v}_{y}}$,

${{u}_{y}}=x{{v}_{y}}+\varphi \left( v \right)+y{\varphi }'\left( v \right){{v}_{y}}+{\psi }'\left( v \right){{v}_{y}}=\varphi \left( v \right) $,${{u}_{yy}}={\varphi }'\left( v \right){{v}_{y}}$,${{u}_{yx}}={\varphi }'\left( v \right){{v}_{x}}$;

于是${{u}_{xx}}={{v}_{x}}$,${{u}_{yy}}={\varphi }'\left( v \right){{v}_{y}}$,${{u}_{xy}}={{v}_{y}}$,${{u}_{yx}}={\varphi }'\left( v \right){{v}_{x}}$,

$\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}\cdot \frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}-{{\left( \frac{{{\partial }^{2}}u}{\partial x\partial y} \right)}^{2}}={{v}_{x}}{\varphi }'(v){{v}_{y}}-{{u}_{xy}}\cdot {{u}_{yx}}$ $={{v}_{x}}{\varphi }'(v){{v}_{y}}-{{v}_{y}}{\varphi }'(v){{v}_{x}}=0$。

五、 解  两曲面的交线为${{x}^{2}}+{{y}^{2}}={{a}^{2}},z=a$,$D=\{(x,y):{{x}^{2}}+{{y}^{2}}\le {{a}^{2}}\}$,

${{S}_{1}}:z=2a-\sqrt{{{x}^{2}}+{{y}^{2}}},(x,y)\in D$;${{S}_{2}}:z=\frac{1}{a}({{x}^{2}}+{{y}^{2}}),(x,y)\in D$,

$d\sigma =\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}dxdy$,曲面的面积

${{S}_{1}}=\iint\limits_{D}{\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}}dxdy=\iint\limits_{D}{\sqrt{2}}dxdy=\sqrt{2}\pi {{a}^{2}}$,

${{S}_{2}}=\iint\limits_{D}{\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}}dxdy$$=\iint\limits_{D}{\frac{\sqrt{{{a}^{2}}+4{{x}^{2}}+4{{y}^{2}}}}{a}}dxdy$$=\int_{0}^{2\pi }{d}\theta \int_{0}^{a}{\frac{\sqrt{{{a}^{2}}+4{{r}^{2}}}}{a}}\cdot rdr$

$=2\pi \frac{1}{a}\frac{1}{3}\frac{1}{4}{{({{a}^{2}}+4{{r}^{2}})}^{{}^{3}/{}_{2}}}|_{0}^{a}$$=\frac{\pi (5\sqrt{5}-1){{a}^{2}}}{6}$ 。

则所求曲面的面积为$S={{S}_{1}}+{{S}_{2}}=\sqrt{2}\pi {{a}^{2}}+\frac{\pi (5\sqrt{5}-1){{a}^{2}}}{6}$。

六、证明 对任意$a>0$,当$x\ge 1+a$时,设${{u}_{n}}\left( x \right)=\frac{\ln \left( 1+nx \right)}{n{{x}^{n}}}$,

$0<{{u}_{n}}\left( x \right)\le \frac{nx}{n{{x}^{n}}}=\frac{1}{{{x}^{n-1}}}\le \frac{1}{{{\left( 1+a \right)}^{n-1}}}$,而$\sum\limits_{n=1}^{\infty }{\frac{1}{{{\left( 1+a \right)}^{n-1}}}}$收敛,所以$\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} $在$x\in \left[ 1+a,+\infty  \right) $上一致收敛;由${{u}_{n}}\left( x \right) $在$\left[ 1+a,+\infty  \right) $上连续,所以$f\left( x \right)=\sum\limits_{n=1}^{\infty }{\frac{\ln \left( 1+nx \right)}{n{{x}^{n}}}}$在$\left[ 1+a,+\infty  \right) $上连续,由$a>0$的任意性,知$f\left( x \right) $在$\left( 1,+\infty  \right) $上连续;由${{u}_{n}}\left( 1 \right)=\frac{\ln \left( 1+n \right)}{n}>\frac{1}{n},(n>2) $,显然$\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( 1 \right)} $发散,所以$\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} $在$\left( 1,+\infty  \right) $不一致收敛.

七、设$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$.证明(1) 设$f(x,u)={{e}^{-{{x}^{2}}}}\cos ux$,则有$f(x,u) $在$ [0,+\infty )\times (-\infty ,+\infty ) $上连续,且有$|f(x,u)|\le {{e}^{-{{x}^{2}}}}$,而$\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx$收敛,根据魏尔斯特拉斯判别法,积分$\int_{0}^{+\infty }{f(x,u)}dx$$ (-\infty ,+\infty ) $上一致收敛,所以$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$的定义域为$ (-\infty ,+\infty ) $;

(2) $f(x,u) $,$\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u) $在$ [0,+\infty )\times (-\infty ,+\infty ) $上连续,且有$|f(x,u)|\le {{e}^{-{{x}^{2}}}}$,$|\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)|\le {{x}^{k}}{{e}^{-{{x}^{2}}}}$,而$\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx$,$\int_{0}^{+\infty }{{{x}^{k}}{{e}^{-{{x}^{2}}}}}dx$收敛,根据魏尔斯特拉斯判别法,积分$\int_{0}^{+\infty }{f(x,u)}dx$,$\int_{0}^{+\infty }{\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)}dx$均在$ (-\infty ,+\infty ) $上一致收敛,$k=1,2,\cdots $

于是$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$在$ (-\infty ,+\infty ) $上连续可微,且$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$在$ (-\infty ,+\infty ) $上具任意阶的连续导数;${{\varphi }^{(k)}}(u)=\int_{0}^{+\infty }{\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)}dx$,$k=1,2,\cdots $;

(3) ${\varphi }'(u)=\int_{0}^{+\infty }{\frac{\partial }{\partial u}({{e}^{-{{x}^{2}}}}}\cos ux)dx=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}(-x\sin ux)dx$

$=\int_{0}^{+\infty }{\sin ux}d(\frac{1}{2}{{e}^{-{{x}^{2}}}})$$=-\int_{0}^{+\infty }{\frac{1}{2}{{e}^{-{{x}^{2}}}}(}u\cos ux)dx$$=-\frac{u}{2}\phi (u) $,由此得$ [\ln \phi (u){]}'=-\frac{u}{2}$,积分得$\ln \phi (u)=-\frac{{{u}^{2}}}{4}+{{C}_{1}}$从而有$\phi (u)=C{{e}^{-\frac{{{u}^{2}}}{4}}}$,\[C=\phi (0)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx=\frac{\sqrt{\pi }}{2}$,

故$\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx$$=\frac{\sqrt{\pi }}{2}{{e}^{-\frac{{{u}^{2}}}{4}}}$  .

八、证明 设$D=\{(x,y,z):\frac{{{\left( x-3 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}\le 1,z=0\}$,$n=(0,0,1) $$D$与$\Sigma$所围的区域为$V$,显然点$ (0,0,0) $在$V$的外部,曲面$\sum$没有罩着点$ (0,0,0) $。$div(\frac{1}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}(x,y,z))=0$,利用高斯公式,得

$\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=\iint\limits_{D}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=0$.此题出的错误。

应把曲面方程改为使$D$与$\Sigma $所围的区域$V$含点$ (0,0,0) $。曲面$\sum$应罩着点$ (0,0,0) $。改为:$\sum $为$1-\frac{z}{5}=\frac{{{\left( x-2 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}$($z\ge 0$)的上侧.求证$\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=2\pi $.

证明  取$\varepsilon >0$充分小,${{S}_{\varepsilon }}:{{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{\varepsilon }^{2}}(z\ge 0) $,${{D}_{\varepsilon }}=(x,y,z):{{x}^{2}}+{{y}^{2}}\ge {{\varepsilon }^{2}},\frac{{{\left( x-2 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}\le 1,z=0\}$,$div(\frac{1}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}(x,y,z))=0$

${{D}_{\varepsilon }}$,${{S}_{\varepsilon }}$与$\Sigma $所围的区域为${{V}_{\varepsilon }}$,利用高斯公式,得

$\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=\iint\limits_{{{S}_{\varepsilon }}+{{D}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}$

$=\iint\limits_{{{S}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}+\iint\limits_{{{D}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}$

$=\frac{1}{{{\varepsilon }^{3}}}\iint\limits_{{{S}_{\varepsilon }}}{xdydz+ydzdx+zdxdy}+0$

$=\frac{1}{{{\varepsilon }^{3}}}\iint\limits_{{{S}_{\varepsilon }}}{\frac{1}{\varepsilon }}({{x}^{2}}+{{y}^{2}}+{{z}^{2}})dS$

$=\frac{1}{{{\varepsilon }^{2}}}\iint\limits_{{{S}_{\varepsilon }}}{dS}=\frac{1}{{{\varepsilon }^{2}}}\frac{1}{2}4\pi {{\varepsilon }^{2}}=2\pi $ 。

九、证明  (1)对$\forall {{x}_{1}},{{x}_{2}}\in [0,+\infty ) $,成立$|\sqrt{{{x}_{2}}}-\sqrt{{{x}_{1}}}|\le \sqrt{|{{x}_{2}}-{{x}_{1}}|}$,$\left| f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right) \right|\le \sqrt{|{{x}_{2}}-{{x}_{1}}|}$,由此知$f\left( x \right)=\sqrt{x}$在$\left[ 0,+\infty  \right) $上是一致连续的;

(2)   因为$f\left( x \right)=\sqrt{x}$在$\left( 0,+\infty  \right) $内可导,导函数${f}'\left( x \right)=\frac{1}{2\sqrt{x}}$在$\left( 0,+\infty  \right) $内无界,

所以$f\left( x \right)=\sqrt{x}$在$\left[ 0,+\infty  \right) $上不是$Lipschitz$连续的。 注:设$p\ge 1$,则对$\forall {{x}_{1}},{{x}_{2}}\in [0,+\infty ) $,

成立$|{{x}_{2}}^{\frac{1}{p}}-{{x}_{1}}^{\frac{1}{p}}|\le |{{x}_{2}}-{{x}_{1}}{{|}^{\frac{1}{p}}}$。(这个结果,用简单初等方法就能证出。)

 

转载于:https://www.cnblogs.com/Colgatetoothpaste/p/3670086.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值