- 博客(16)
- 收藏
- 关注
转载 常微分复习重点
常微分复习重点定理2.1 设函数$P(x,y)$和$Q(x,y)$在区域$R:\alpha <x<\beta ,\gamma <y<\delta $上连续,且有连续的一阶偏导数$\frac{\partial P}{\partial y}$和$\frac{\partial Q}{\partial x}$,则微分方程$P(x,y)dx+Q(x,y)dy=0$是恰当...
2014-04-19 21:12:00 1100
转载 重要定理及其证明
重要定理及其证明一、数列收敛的$Cauchy$收敛准则数列$\{{{a}_{n}}\}$的充要条件是:对任意的$\varepsilon >0$,存在$N\in {{N}^{+}}$,当$m,n>N$时,有$\left| {{a}_{m}}-{{a}_{n}} \right|<\varepsilon $证明:必要性:设$\underset{n\to +...
2014-04-19 19:38:00 274
转载 实变函数复习重点
实变函数复习重点一、重要概念1:$Cantor$三分集:(1)它是完备集,无孤立点;(2)它没有内点,是舒朗集合;(3)它的测度为0;(4)它的基数为$c$:2:测度:设$E$是${{R}^{n}}$中任一点集,对于每一列覆盖$E$的开区间$\underset{i=1}{\overset{\infty }{\mathop{\bigcup }}}\,{{I}...
2014-04-19 19:32:00 1312
转载 实变、泛函综合资料
实变、泛函综合资料一、叶甫果洛夫定理:设$mE<+\infty $,${{f}_{n}}$是$E$上$a.e.$收敛于$a.e.$有界函数$f(x)$的可测函数,则对任意的$\delta >0$,存在子集${{E}_{\delta }}\subset E$,使得${{f}_{n}}$在${{E}_{\delta }}$上一致收敛,且$m(E\backslash {{E...
2014-04-19 19:18:00 404
转载 泛函分析重点定理
泛函分析重点定理$hahn-banach$泛函延拓定理:设$X$是实线性空间,$p(x)$是$X$上次线性泛函,若$f$是$X$的子空间$Z$上的实线性泛函,且被$p(x)$控制,即满足$f(x)\le p(x),x\in Z$,则...
2014-04-19 19:08:00 2697
转载 南开大学2014年硕士研究生入学考试高代试题(回忆版)
南开大学2014年硕士研究生入学考试试题(回忆版)学院:011陈省身数学研究所、012数学科学学院考试科目:802高等代数专业:基础数学、应用数学、概率论与数理统计、应用数学、生物信息学一、设$n$阶行列式$\left|\begin{array}{cccc}{{a_{11}}} & {{a_{12}}} & \cdots & {{a_{1...
2014-04-19 18:44:00 234
转载 南开大学2014年高等代数部分试题解答
南开大学2014年高等代数部分试题解答(本答案来自于张祖锦老师博客)一、设$n$阶行列式$\left|\begin{array}{cccc}{{a_{11}}} & {{a_{12}}} & \cdots & {{a_{1n}}} \\{{a_{21}}} & {{a_{22}}} & \cdots & {{a_{2n}}} \\\v...
2014-04-19 18:41:00 848
转载 搜集到的数学分析例题(不断更新)
设方程$\sin x-x\cos x=0$在$(0,+\infty )$中的第$n$个解为${{x}_{n}}$ ,证明:$n\pi +\frac{\pi }{2}-\frac{1}{n\pi }<{{x}_{n}}<n\pi +\frac{\pi }{2}$证明:设 $f(x)=\sin x-x\cos x$,则$f'(x) = x\sin x\left\{\beg...
2014-04-19 16:37:00 262
转载 南开大学2014年硕士研究生入学考试试题(回忆版)
南开大学2014年硕士研究生入学考试试题(回忆版)学院:011陈省身数学研究所、012数学科学学院考试科目:701数学分析专业:基础数学、应用数学、概率论与数理统计、应用数学、生物信息学一、求极限$\underset{n\to +\infty }{\mathop{\lim }}\,(\sqrt[n]{n}-1)\sin n\ln n$二、证明二元函数$f(x,y...
2014-04-19 12:46:00 205
转载 武汉大学2012年数学分析试题解答
武汉大学2012年数学分析试题解答1:计算(1) 解:由\[1-\frac{1}{\sum\limits_{i=0}^{k}{(2i+1)}}=1-\frac{1}{k(k+1)+k}=\frac{k(k+2)}{{{(k+1)}^{2}}}=\frac{k}{k+1}\cdot \frac{k+2}{k+1}\]从而$(1-\frac{1}{1+3})(1-\frac{1...
2014-04-18 17:28:00 1120
转载 武汉大学2009年数学分析试题解答
武汉大学2009年数学分析试题解答一.1.解$\underset{n\to \infty }{\mathop{\lim }}\,\left( \frac{1}{1+2}+\frac{1}{1+2+3}+\cdots +\frac{1}{1+2+\cdots +n} \right) $$=\underset{n\to \infty }{\mathop{\lim }}\,\sum\l...
2014-04-18 17:27:00 1203
转载 武汉大学2010年数学分析试题解答
武汉大学2010年数学分析试题解答一、 1、解 $\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln {{\left( 1+x \right)}^{\frac{1}{x}}}-1}{x}$$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{\ln \left( 1+x \right)}{x}-1}{x...
2014-04-18 17:27:00 1944
转载 武汉大学2011年数学分析试题解答
武汉大学2011年数学分析试题解答1:计算题(1) 解:原极限$\text{=}\underset{n\to \infty }{\mathop{\lim }}\,\frac{\sqrt[n]{n}}{n}\cdot {{n}^{1-\alpha }}={{e}^{-1}}\underset{n\to \infty }{\mathop{\lim }}\,{{n}^{1-\alph...
2014-04-18 17:27:00 1045
转载 武汉大学2008年数学分析试题解答
武汉大学2008年数学分析试题解答一:计算题1.$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\ln x\ln \left( 1-x \right)=-\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x\ln x=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\...
2014-04-18 17:26:00 625
转载 武汉大学2007年数学分析试题解答
武汉大学数分答案2007一、(此题共6小题,每题6分,共36分)1:解:由于$1\le {{(n!)}^{\frac{1}{{{n}^{2}}}}}\le \sqrt[n]{n}$而$\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{n}=1$由迫敛性知:$\underset{n\to +\infty }{\mathop...
2014-04-18 17:26:00 1080
转载 华中师范大学2002年数学分析试题解答
华中师范大学2002年数学分析试题解答一、 求下列极限1:解:由于${{x}_{n}}=\frac{\sqrt[n]{(n+1)(n+2)\cdots (n+n)}}{n}=\sqrt[n]{(n+\frac{1}{n})(n+\frac{2}{n})\cdots (n+\frac{n}{n})}$于是$\underset{n\to +\infty }...
2014-04-18 17:24:00 1288
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人