代码随想录算法训练营第45天| 卡码网 57. 爬楼梯、Leetcode 322. 零钱兑换、Leetcode 279.完全平方数

卡码网 57. 爬楼梯

题目链接:卡码网 57. 爬楼梯
题目描述: 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定n 是一个正整数。
输入描述: 输入共一行,包含两个正整数,分别表示n m
输出描述: 输出一个整数,表示爬到楼顶的方法数。
思路: 本题可以抽象成完全背包问题:1阶,2阶,… m阶就是物品,楼顶就是背包。

  • dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。
  • 递推公式为:dp[i] += dp[i - j]
  • 初始化:dp[0]=1
  • 遍历顺序:由于本题需要求不同方法数,也就是排列数,因此需要先遍历背包,再遍历物品

代码如下:

#include<iostream>

using namespace std;

int dp[35];

int main()
{
    int n , m;
    cin >> n >> m;
    dp[0] = 1;
    for(int i = 1; i <= n; i ++)
        for(int j = 1; j <= m; j ++ )
            if(i >= j)
            {
                dp[i] += dp[i - j];  
            }
    cout << dp[n];
    return 0;
}
  • 时间复杂度: O ( n m ) O(n m) O(nm)
  • 空间复杂度: O ( n ) O(n) O(n)

Leetcode 322. 零钱兑换

题目链接:Leetcode 322. 零钱兑换
题目描述: 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。计算并返回可以凑成总金额所需的最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。你可以认为每种硬币的数量是无限的。
思路: 本题也属于完全背包问题。

  • dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
  • 递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j])
  • 初始化:dp[0]=0,其他元素需要初始化一个大于数据范围的数。
  • 遍历顺序:本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。因此两种遍历顺序都可以。

代码如下:
(先遍历物品,再遍历背包)

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 5, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i < coins.size(); i++)          // 遍历物品
            for (int j = coins[i]; j <= amount; j++) // 遍历背包
                if (dp[j - coins[i]] != INT_MAX)
                    dp[j] = min(dp[j], dp[j - coins[i]] + 1);
        if (dp[amount] == INT_MAX)
            return -1;
        else
            return dp[amount];
    }
};

(先遍历背包,再遍历物品)

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 5, INT_MAX);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++)          // 遍历背包
            for (int j = 0; j < coins.size(); j++) // 遍历物品
                if (i >= coins[j] && dp[i - coins[j]] != INT_MAX) {
                    dp[i] = min(dp[i], dp[i - coins[j]] + 1);
                }
        if (dp[amount] == INT_MAX)
            return -1;
        else
            return dp[amount];
    }
};
  • 时间复杂度: O ( n × a m o u n t ) O(n × amount) O(n×amount),其中 ncoins 的长度
  • 空间复杂度: O ( a m o u n t ) O(amount) O(amount)

Leetcode 279.完全平方数

题目链接:Leetcode 279.完全平方数
题目描述: 给你一个整数 n ,返回和为 n 的完全平方数的最少数量 。完全平方数是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如, 1 、 4 、 9 1、4、9 149 16 16 16 都是完全平方数,而 3 3 3 11 11 11 不是。
思路: 本题也属于完全背包问题。

  • dp[j]:和为j的完全平方数的最少数量为dp[j]
  • 递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j])
  • dp[0]=0,其他元素需要初始化一个大于数据范围的数。
  • 遍历顺序:本题也只是统计最小数量,因此两种遍历顺序都可以

代码如下:

(先遍历物品,再遍历背包)

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 5, INT_MAX);
        dp[0] = 0;
        for (int i = 1; i * i <= n; i++)//遍历物品
            for (int j = i * i; j <= n; j++)//遍历背包
                dp[j] = min(dp[j], dp[j - i * i] + 1);
        return dp[n];
    }
};

(先遍历背包,再遍历物品)

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 5, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i <= n; i++)//遍历背包
            for (int j = 1; j * j <= i; j++)//遍历物品
                dp[i] = min(dp[i], dp[i - j * j] + 1);
        return dp[n];
    }
};
  • 时间复杂度: O ( n × n ) O(n \times \sqrt{n}) O(n×n )
  • 空间复杂度: O ( n ) O(n) O(n)

总结: 理解了完全背包问题之后,这三道题还是很简单的,唯一的难点在于将题目抽象成完全背包问题。

最后,如果文章有错误,请在评论区或私信指出,让我们共同进步!

第二十二算法训练营主要涵盖了Leetcode题目中的三道题目,分别是Leetcode 28 "Find the Index of the First Occurrence in a String",Leetcode 977 "有序数组的平方",和Leetcode 209 "长度最小的子数组"。 首先是Leetcode 28题,题目要求在给定的字符串中找到第一个出现的字符的索引。思路是使用双指针来遍历字符串,一个指向字符串的开头,另一个指向字符串的结尾。通过比较两个指针所指向的字符是否相等来判断是否找到了第一个出现的字符。具体实现的代码如下: ```python def findIndex(self, s: str) -> int: left = 0 right = len(s) - 1 while left <= right: if s[left == s[right]: return left left += 1 right -= 1 return -1 ``` 接下来是Leetcode 977题,题目要求对给定的有序数组中的元素进行平方,并按照非递减的顺序返回结果。这里由于数组已经是有序的,所以可以使用双指针的方法来解决问题。一个指针指向数组的开头,另一个指针指向数组的末尾。通过比较两个指针所指向的元素的绝对值的大小来确定哪个元素的平方应该放在结果数组的末尾。具体实现的代码如下: ```python def sortedSquares(self, nums: List[int]) -> List[int]: left = 0 right = len(nums) - 1 ans = [] while left <= right: if abs(nums[left]) >= abs(nums[right]): ans.append(nums[left ** 2) left += 1 else: ans.append(nums[right ** 2) right -= 1 return ans[::-1] ``` 最后是Leetcode 209题,题目要求在给定的数组中找到长度最小的子数组,使得子数组的和大于等于给定的目标值。这里可以使用滑动窗口的方法来解决问题。使用两个指针来表示滑动窗口的左边界和右边界,通过移动指针来调整滑动窗口的大小,使得滑动窗口中的元素的和满足题目要求。具体实现的代码如下: ```python def minSubArrayLen(self, target: int, nums: List[int]) -> int: left = 0 right = 0 ans = float('inf') total = 0 while right < len(nums): total += nums[right] while total >= target: ans = min(ans, right - left + 1) total -= nums[left] left += 1 right += 1 return ans if ans != float('inf') else 0 ``` 以上就是第二十二算法训练营的内容。通过这些题目的练习,可以提升对双指针和滑动窗口等算法的理解和应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值