常用索引分类
-
按唯一性分类
1)唯一索引。主键就是唯一性锁定
2)非唯一索引。允许重复值的列 -
按是否组合分类
1)单列索引。基于单个列创建的索引
2)复合索引。基于两个或多个列的索引,复合索引是有意义的,尤其是,复合索引所对应的列组合能确定唯一性 -
按是否聚族分类
聚族索引:多表关联,将公共的关联列数据对应的物理位置存储在一起,从而最小化执行I/O次数,改善系统性能。
聚族索引对要搜索范围值的列非常有效
聚族使用有限制:a.一个表中只能有一个聚族索引;b.对于数据频繁变动的表,会导致数据行移动,这样聚族索引也会发生变化。
非聚族索引 -
按索引方式分类
1)B+树索引:二叉树索引。
叶子节点中包含索引列和指向表中匹配行的ROWID值。
由于B树索引中的所有叶子节点都具有相同的深度,so,不管怎么查询,查询速度都基本相同。
B树索引比较适合数据变化较大的表(B索引可以做到行级锁定)和访问表中小部分数据时使用。2)Hash索引:Oracle中最快的索引。
使用Hash算法来存储索引
缺陷:必须和Hash集群配合使用3)反向索引(Reversed Index):这是B树索引的一个分支。
主要用在降低并行服务器环境下的索引页块的争用
反向索引中的索引码会被分布到各个索引块中,减少争用4)降序索引:是B树索引的一个分支
其变化是列在索引中的存储方式从升序变成降序,so,在某些降序排序的场合下回减少一次排序的过程5)函数索引:专门对于索引列上加函数导致索引失效的情况
--------------------------------------------------------和我女儿一样可爱的分界线------------------------------------------------
索引是万能的么?
NO!
1、索引创建是需要时间和空间的。使用索引时需要考虑带增删改的影响,and,随着数据的不断变化,索引存储会出现磁盘碎片化,这时,要定期重建索引。
2、如果表数据比较小,数据也只会存放在几个有限的数据块中,此时,选择全表扫描速度和索引获取数据数据差不多,Oracle完全可能缓存整表数据。
3、如果表数据量巨大,查询返回数据命中率很高,不要使用索引。举个栗子:
一个表有4k万行数据,要读取2k万行数据
数据块大小为8k,每行80个字节 -->每个数据块可存储100行
–>整张表要占用40万个数据块(4k万行/100=40万个)
。。。后面还有,但是没听懂,反正就是算下来索引速度比全表扫描慢了10倍
-
避免使用 *
增加Oracle的负担
用count(索引列)代替count(*) -
尽量不使用不必要的排序
比如order by,distinct,unionall替代union(union all 不具有去重的功能) -
尽量减少Oracle查询次数,尤其是全表扫描(Full Table Scan)查询