YZXnuaa的博客

很想进步的人

常见Python数据分析函数算法汇总

一、函数 1.Numpy 官网 生成数列 arange(min,max,间隔) 随机数random 混合生成数组meshgrid(数列1,数列2) 多维数组换为一维数组 ravel()、flatten()、squeeze() 索引排列 算数函数 切片 筛选 索引 = np.whe...

2019-04-16 17:47:50

阅读数 51

评论数 0

pandas问题记录

1、pandas.read_csv()函数,读取文件数据时,由于分隔符为'::',弹出如下警告        警告:ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support...

2018-09-18 01:41:38

阅读数 110

评论数 0

Python库

这又是一个 Awesome XXX 系列的资源整理,由 vinta 发起和维护。内容包括:Web框架、网络爬虫、网络内容提取、模板引擎、数据库、数据可视化、图片处理、文本处理、自然语言处理、机器学习、日志、代码分析等。伯乐在线已在 GitHub 上发起「Python 资源大全中文版」的整理。欢迎扩...

2018-06-21 14:54:45

阅读数 192

评论数 0

见过的最好的PCA解析

1.概述        PCA:主成分分析,一种常用的数据分析方法,不管是在机器学习还是数据挖掘中都会用到。PCA主要通过求数据集的协方差矩阵最大的特征值对应的特征向量,由此找到数据方差最大的几个方向,对数据达到降维的效果,将一个n维的向量降低到d维,其中d<n。本文主要从方...

2018-06-20 15:00:51

阅读数 555

评论数 0

Dictionary Learning(字典学习、稀疏表示以及其他)

第一部分 字典学习以及稀疏表示的概要字典学习(Dictionary Learning)和稀疏表示(Sparse Representation)在学术界的正式称谓应该是稀疏字典学习(Sparse Dictionary Learning)。该算法理论包含两个阶段:字典构建阶段(Dictionary G...

2018-04-23 18:12:54

阅读数 1614

评论数 1

随机采样方法整理与讲解(MCMC、Gibbs Sampling等)

本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅。其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Mon...

2018-03-21 14:36:22

阅读数 182

评论数 0

【Python】小案例

6. 斐波那契数列 !! # !/usr/bin/python # -*- coding: UTF-8 -*- def fib(n): a, b = 1, 1 for i in range(n - 1): a, b = b, a + b return...

2018-02-06 16:25:52

阅读数 661

评论数 0

【数学基础】 线性代数以及符号编总

1基本概念和符号 线性代数可以对一组线性方程进行简洁地表示和运算。例如,对于这个方程组: 这里有两个方程和两个变量,如果你学过高中代数的话,你肯定知道,可以为x1 和x2找到一组唯一的解 (除非方程可以进一步简化,例如,如果第二个方程只是第一个方程的倍数形式。但是显然上面的例子不可简化,是...

2019-05-24 20:36:01

阅读数 1

评论数 0

加速神经网络训练 (机器学习)

包括以下几种模式: Stochastic Gradient Descent (SGD) Momentum AdaGrad RMSProp Adam 越复杂的神经网络 , 越多的数据 , 我们需要在训练神经网络的过程上花费的时间也就越多. 原因很简单, 就是因为计算量太大了. 可是往往...

2019-05-20 20:13:00

阅读数 2

评论数 0

【Pandas】DataFrame 速查

基本操作 >1.查看前5个值和后三个值 >df2.head() >df2.tail(3) >2.查看列名,值,以及索引 >df2.columns >df2.values >df2.index ...

2019-05-20 01:00:22

阅读数 2

评论数 0

信息熵常见定义

信息论(Information Theory)是概率论与数理统计的一个分枝。用于信息处理、信息熵、通信系统、数据传输、率失真理论、密码学、信噪比、数据压缩和相关课题。本文主要罗列一些基于熵的概念及其意义,注意本文罗列的所有loglog都是以 2 为底的。 信息熵 在物理界中熵是描述事物无序性的...

2019-05-14 21:57:04

阅读数 16

评论数 0

KKT条件

对于含有不等式约束的优化问题,如何求取最优值呢?常用的方法是KKT条件,同样地,把所有的不等式约束、等式约束和目标函数全部写为一个式子L(a, b, x)= f(x) + a*g(x)+b*h(x),KKT条件是说最优值必须满足以下条件: 1. L(a, b, x)对x求导为零; 2. h(x...

2019-05-06 01:22:18

阅读数 17

评论数 0

SMO算法

SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优。关于SMO最好的资料就是他本人写的《Sequential Minimal Optimization A Fast Algorithm ...

2019-05-05 23:35:49

阅读数 23

评论数 0

【Sklearn】DecisionTreeClassifier

1.scikit-learn决策树算法类库介绍     scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor...

2019-04-27 09:51:03

阅读数 42

评论数 0

【Graphviz】绘制流程图

前言 日常的开发工作中,为代码添加注释是代码可维护性的一个重要方面,但是仅仅提供注释是不够的,特别是当系统功能越来越复杂,涉及到的模块越来越多的时候,仅仅靠代码就很难从宏观的层次去理解。因此我们需要图例的支持,图例不仅仅包含功能之间的交互,也可以包含复杂的数据结构的示意图,数据流向等。 但是,...

2019-04-26 19:37:01

阅读数 64

评论数 0

【Sklearn】决策树可视化 (未完成)

个人总结困难之处有三点: 1、属性存在二元属性、标称属性、序数属性、连续属性四种,训练方式没有可视化比较混乱; 2、每个步骤有足够的意义,所以需要观察分类过程; 3、不同于难以解释的神经网络,或者分离超平面可以用一个式子表达,决策树划分结果通常需要语言描述; 1、等高线方法,只能观察两种特...

2019-04-26 18:19:15

阅读数 28

评论数 0

【Graphviz】数据网络的布局软件

一、认识graphviz 接触graphviz是几年前的一个项目,要画出数据网络的布局,使用graphviz能比较清楚的画出数据之间的关系。 可以在gallery中查看他能完成的图形:http://www.graphviz.org/gallery/。graphviz最方便的地方在于能够很快的清晰...

2019-04-26 17:48:52

阅读数 41

评论数 0

【Sklearn】决策树可视化 InvocationException: GraphViz's executables not found

仅仅安装pydotplus不够,需要安装独立Graphviz软件 一、安装Graphviz 网站:http://www.graphviz.org/download/ 下载msi文件 直接安装,完成之后添加环境变量: 在path中将Graphviz的bin的目录路径添加上;...

2019-04-26 17:17:20

阅读数 32

评论数 0

【Sklearn】tree.export_graphviz 可视化函数

Parameters: decision_tree:decision tree regressor or classifier The decision tree to be exported to GraphViz. out_file:file object or ...

2019-04-26 15:15:35

阅读数 77

评论数 0

【Numpy】ravel()、flatten()、squeeze()

numpy中的ravel()、flatten()、squeeze()都有将多维数组转换为一维数组的功能,区别: ravel():如果没有必要,不会产生源数据的副本 flatten():返回源数据的副本 squeeze():只能对维数为1的维度降维 另外,reshape(-1)也可以“拉平”多维数...

2019-04-26 12:52:46

阅读数 19

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭