很多人知道数据分析这个岗位,但是不知道具体的岗位职责是什么?以为会做表,会用EXCEL等于是数据分析师了?
其实不然,会EXCEL不代表会数据分析。
众所周知,精通Excel不叫精通数据分析,能讲出产品案例不能说明洞悉数据,做出高大上的PPT也不能给数据带来更直观的分析效果。
所以,设立数据分析的必要性是什么呢?
其实,做数据分析是为产品服务,采用更量化的方式来分析业务板块,及时得出结论并做相关维度的改进。
一直以来,我们都听说数据分析师师如何如何厉害?数据分析师的工资有多高?
但如何成为一个数据分析师?成为数据分析师需要具备哪些技能?
今天,我给大家从下面几点,详细的解答下关于数据分析岗位的一些问题。
-
目录
01 什么是数据分析师?
数据分析师 是数据师Datician的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
这是一个用数据说话的时代,也是一个依靠数据竞争的时代。
据统计,世界500强企业中,有90%以上都建立了数据分析部门。已经有越来越多的企业重视到数据信息的重要性,数据的分析和处理能力正在成为各个企业日益倚重的技术手段。
而数据分析师作为以为公司的核心岗位,本质就是从众多数据中提取出和公司产品相关的商业价值和品牌发展方向,进而辅助决策,推动业务模式。
02 数据分析师如何为企业创造价值?
目前,数据分析师拥有良好的待遇以及发展前景,这不仅是因为数据资源的重要性,同时也是因为数据分析师为企业所创造的价值。那么数据分析师如何为企业创造价值?
一个完整的企业数据分析体系涉及到多个环节:采集、清理、转化、存储、可视化、分析决策等等。其中,不同环节工作内容不一样,消耗的时间和产生的价值也相差甚远,如图所示。
比如,互联网企业数据分析体系中至少有三方面的数据:用户行为数据、交易订单数据和CRM数据。
工程师把不同来源的数据采集好,然后通过清理、转化等环节统一到数据平台上;再由专门的数据工程师从数据平台上提出数据。这些工作占用了整个环节90%的时间,然而产生的价值却只占10%。
这个金字塔再往上数据分析就和业务实际紧密结合,以报表、可视化等方式支持企业的业务决策,涵盖产品、运营、市场、销售、客户支持各个一线部门。这个部分占用了整个环节才10%的时间,但是却能产生90%的价值。
一个优秀的商业数据分析师应该以价值为导向,紧密结合产品、运营、销售、客户支持等实践,支持各条业务线发现问题、解决问题并创造更多的价值。
03 数据分析师常见的种类都有哪些?
1.数据跟踪员
这个职位的人员只能通过系统看到数据,但是缺乏处理数据的能力,一方面是受到技术的限制以及系统的权限的限制,他们只是机械的进行数据的复印,没有进一步的进行数据的处理。
2.数据处理员
就是在数据分析的阶段之前,进行数据的初步处理,数据处理员已经具备了处理数据的基本技能,起码对于计算机的处理流程以及一些统计方法、统计工具还是比较在行的,一些基本的分析方法也是没有问题的,但是这部分人员缺少的是对数据的解读能力,只是机械的进行数据的处理。
3.数据分析师
通过对已经处理好的数据进行解读&#x