通过本人的学习, 总结了一下数据分析岗位需要具备的技能,这些内容主要是在youtube看2018下半年到2019年的视频所提取的,配图大部分也是这些视频的PPT截图.
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hTyQ1Zfj-1575351991860)(:storage/c684afeb-9333-4118-b52a-210b32dcced0/6765807c.png)]](https://i-blog.csdnimg.cn/blog_migrate/f70e20b5f0dfb749f533e4c7b34c7079.png)
How to Become a Data Analyst in 2019
这个教程里,总结了数据科学(data scienctist)包括四个方面:
- data analysis
- data architect
- BI analyst
- data engineer
下面是分类说明:
Data analyst:数据 结构 占比,又要思考,又要做
这张图说的是: dataanalyst工作内容: 帮助用数据来决策市场 \ 建立分析模型帮助商业战略布局 \ 提取核心关键商务数据 \ 把数据转变为容易理解的决策执行格式 等
薪资:
视频中举例两家公司–[glassdoor 和 payscale 两家公司]
最开始5.7w美金,4-6年后6.8万美金+bonus4.7k ;
[在英国] 2.3万欧,1-4 2.5万欧 ;
学习方法:多练习,多实践
skills:
技能包括下边这个,为了保证原汁原味,我就没翻译
- Technical:python R SQL 数据结构工作原理 tableau 大量数据如何搭设框架 excel
- Practical:Quality check your work ,Analytical and data interpretation skills ,Problem-solving skills , Drive projects with minimal guidance , Offer opinion , Clear communication of results
- Soft: Excellent communication skills , clear explanation of complex concepts , flexibility , good listening skills
What Do You Need to Become a Data Scientist in 2019?
学历需求
这个视频说了这个岗位大体的学历背景,其实大学中没有这个专业,都是后来学的
Phd学位只有28% 2018 ; 27% 2019
Master学位 46%
Bachelor 学位 19%
职位背景
上图说明了整个数据分析师都分布在哪些行业内
下图是这些数据分析师来自于排名的大学,两个极端要么1-50的学校的,要么就是1000开外的
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-49mWv8ba-1575351991864)(:storage/c684afeb-9333-4118-b52a-210b32dcced0/3d4ecea8.png)]
43%来自于 online course
本来有个截图,说的是这些人,专业背景是什么, 印象中翻译成中文有: 计算机\ 土木工程 \ 社会人力 \ IT 等. 但他们学习数据分析的途径,43% 来自于online course
技能组成
上图说的是,数据分析师应该具备的技能包括如下–懂了吗:
54% python
45% R
36% SQL
19% Matlab
18% Java
08% C++
经验方面
- 无经验的占比还是挺大的
A universal data scientist profile is taking shape
- A unique programming language toolbox (like python)
- Preferably a Master’s degree
- A confident learning-on-the-go attitude(自信的移动学习态度)
一个视频提到的数据学习网站
一个印度小哥的视频:How To Learn Data Science Smartly?
- 整个视频,这个叫做Krish Naik的哥们,激动地讲了一张思维导图,虽然大部分目前我都接触了,但还是认真地听了一遍,我用思维导图软件敲了一遍这个图.导图如下:
笔记日期:2019-11-20
印度小哥视频续集Step By Step Transition Towards Data Science
- Python
- Maths
- Statistics
- Kaggle Comp
freeCodeCamp的5小时视频Learn Data Science Tutorial - Full Course for Beginners
DS is sexy because it has rare qualities & high demand.
- Rare qualities.–Data science takes unstructured data, then finds order, meaning &value.
- High demand. – DS provides insight & competitive advantage.
- Excellent Pay. 请看这张图
DS 定义
-
coding & Stats & Domain 交集
-
小结: 编程方面要懂代码\数学\商务等 ; 数据方面要懂 编程\商务 ; 最主要的还是懂商业模式,然后才是编程\数学这些
下边是直接记录的分类笔记
DS path way
1.Planning
- Define goals
- Organize resources
- Coordinate people
- Schedule project
2.Data prep.
- Get data
- Clean data.
- Explore data
- Refine data
3.Modeling
- Create model
- Validate model
- Evaluate model
- Refine model
4.Follow up
- Present model
- Deploy model
- Revisit model
- Archive assets
DS isn’t just technical
Contextual skills matter
One step at a time
Roles in data science
Engineer
- focus on back end hardware , software.
- Make DS possible
- Developer ,DBA
Big data
- focus on computer science and math
- machine learning
- data products
Researcher
- focus on domain specific research
- physics , genetics
- Strong statistics
analyst
- day to day tasks
- web analytics ,SQL
- Good for business
- Not exactly DS?
Business
- Frames business relevant questions
- Manages projects
- Must ‘speak data’
Entrepreneur
- data startups
- Needs data and business skills
- Creative throughout
Full-stack’UNICORN’(unicorn)
个人总结
先说宏观的 :
通过上边的数据总结及图像展示, 如何成为一个数据科学家路径很明确, 即 ---- 学好分析数据 / 努力学习商业知识 / 努力学会分析 / 并且学会用代码把这些思路思维展示出来 . 这个岗位存在于公司的目的是通过数据来支撑公司的商务运作产生盈利的. 若其他数据分析, 如政府部门 / 能源部门 / 环境部门 / 人力部门 数据分析存在的意义要么是改善社会环境 , 要么是建立宜居环境 , 要么是提高能源利用效率. 总是都是造福社会,造福个体的.
微观的:
宏观给了一个指导方向,具体还得落地, 人人都靠嘴, 那不可取.
- 代码: python\ sql
- 可视化: seaborn \ pandas \ BI \ tableau \ Numpy
- 要学习领域: 机器学习 \ 数据分析 \ 网页全栈(要爬虫数据) \ 可视化 \ 美学 \ 写作
- 深入持续研究: 消费者 \ 商务模式 \ 商业数据 \ 各行各业关键数据是啥\
- 学历是个问题 , 专业背景是个问题 , 越靠近当然越好, 但是越远离也不是就都是劣势 . 没有专业的锚定效应, 学起来反而会空杯心态. 每个专业都有自身的意义和可跨界学习的优势铺垫 . 李笑来老师本不是学英语的,但后来教英语后,通过代码写出了托福词汇. 怎么写的? 按数据科学来讲也是一种对词频的分析.
按照上边的path ,一起加油干吧! 看上边薪酬那块, 国外14万美元年薪呢!