肝爆一周!我终于把字节大佬整理的Python数据分析学习路线大纲做成了思维导图!超实用思维导图+学习资料书籍分享!

目录

Python数据分析学习路线大纲【思维导图】 

阶段一:Python编程基础(2-3周)

阶段二:数据分析核心库(3-4周)

阶段三:SQL与数据获取(2周)

阶段四:机器学习入门(3-4周)

阶段五:商业实战项目(2-3周)

学习资源推荐

书籍

视频教程

项目实战


写在前面

科技高速发展的今天,掌握Python数据分析技能已成为职场竞争力的重要一环!

本文将基于字节技术大佬整理的学习路线大纲,详细介绍如何分阶段学习Python数据分析,助你快速成长为数据分析领域的佼佼者。另外,文中提及的学习资料书籍+Python数据分析高清思维导图分享可以戳这里👉【资料领取通道】免费拿!


Python数据分析学习路线大纲【思维导图】 

阶段一:Python编程基础(2-3周)

1.1 Python安装与环境配置

  • Python安装:从官网下载并安装最新版Python。
  • Anaconda安装(推荐):Anaconda是Python数据科学的首选环境,包含大量常用库。
  • Jupyter Notebook基础使用:学习如何创建、运行和保存Notebook,适合数据探索与可视化。

1.2 基础语法

  • 变量与数据类型:掌握整数(int)、浮点数(float)、字符串(str)、布尔值(bool)的基本操作。
  • 运算符:熟悉算术、比较、逻辑运算符的使用。
  • 输入输出:学会使用print()输出信息,input()获取用户输入。

1.3 数据结构

  • 列表、元组、字典、集合:理解每种数据结构的特点和应用场景。
  • 索引、切片、增删改查:掌握对数据结构的常见操作。

1.4 流程控制

  • 条件语句:学会使用if-elif-else进行条件判断。
  • 循环:掌握forwhile循环的使用。

1.5 函数与模块

  • 定义函数:学习如何定义和调用函数,理解参数传递。
  • 常用内置函数:熟悉len()range()zip()等函数。
  • 模块导入:学会使用import导入标准库和第三方库。

1.6 文件操作

  • 读写文件:使用open()read()write()进行文件操作。
  • CSV/JSON文件处理:利用csv模块处理CSV文件。

1.7 阶段1项目:个人记账本

  • 实现一个简单的记账应用,用户可以输入收入/支出金额和类别,程序保存数据到CSV文件,支持查询历史记录,并计算总收入和总支出,显示余额。

阶段二:数据分析核心库(3-4周)

2.1 NumPy(数值计算)

  • 数组创建:使用np.array()创建数组。
  • 数组运算:掌握数组的加减乘除及广播机制。
  • 常用函数:熟悉np.sum()np.mean()np.reshape()等函数。

2.2 Pandas(数据处理)

  • Series和DataFrame基础:理解Pandas的数据结构。
  • 数据读取:使用pd.read_csv()pd.read_excel()读取数据。
  • 数据清洗:处理缺失值(dropna()fillna())。
  • 数据筛选:使用loc[]iloc[]和条件筛选。
  • 分组聚合:使用groupby()agg()进行数据分组和聚合。

2.3 数据可视化(Matplotlib & Seaborn)

  • 基础图表:绘制折线图、柱状图、散点图。
  • 高级图表:使用Seaborn绘制高级统计图表,如条形图和热力图。

2.4 阶段2项目:电影数据分析

  • 分析IMDb或豆瓣电影数据集,计算电影平均评分、最高评分电影,分析不同年份电影数量变化,研究导演与票房的关系。

阶段三:SQL与数据获取(2周)

3.1 SQL基础

  • 基本查询:掌握SELECTWHEREGROUP BYJOIN等SQL语句。
  • 聚合函数:使用COUNTSUMAVG等聚合函数。

3.2 Python操作数据库

  • 数据库连接:使用sqlite3pymysql库连接数据库。
  • Pandas执行SQL:使用pd.read_sql()执行SQL查询。

3.3 阶段3项目:电商销售数据分析(SQL + Python)

  • 从SQL数据库提取数据,计算每月销售额,找出最畅销的产品类别,分析用户复购率。

阶段四:机器学习入门(3-4周)

4.1 机器学习基础

  • 监督学习 vs 无监督学习:理解两者的区别和应用场景。
  • 训练集/测试集划分:使用train_test_split划分数据集。

4.2 常用算法

  • 线性回归:用于预测数值。
  • 逻辑回归:解决分类问题。
  • 决策树 & 随机森林:掌握基本原理和应用。

4.3 模型评估

  • 评估指标:准确率、召回率、F1分数。
  • 混淆矩阵:使用confusion_matrix评估模型性能。

4.4 阶段4项目:房价预测模型

  • 基于房屋特征预测房价,进行数据清洗、特征工程,训练线性回归模型,评估预测效果。

阶段五:商业实战项目(2-3周)

5.1 项目示例:电商用户行为分析

  • 数据集:用户浏览、购买记录。
  • 数据清洗:处理缺失值、异常值。
  • 探索性分析(EDA):分析用户购买频率分布、热门商品。
  • 用户分群:使用RFM模型计算Recency、Frequency、Monetary,用K-Means聚类划分高价值用户。
  • 预测用户流失:用逻辑回归/随机森林预测用户流失。
  • 可视化报告:使用Tableau/Power BI制作交互式看板,直观展示分析结果。
  • 实战项目数据集地址:

    Kaggle(https://www.kaggle.com/)

    UCI Machine Learning Repository(https://archive.ics.uci.edu/)


学习资源推荐

书籍:

视频教程:

项目实战:

文中提及的学习资料书籍+Python数据分析高清思维导图分享可以戳这里👉【资料领取通道】或者扫描下方二维码免费拿!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值