目录
写在前面
科技高速发展的今天,掌握Python数据分析技能已成为职场竞争力的重要一环!
本文将基于字节技术大佬整理的学习路线大纲,详细介绍如何分阶段学习Python数据分析,助你快速成长为数据分析领域的佼佼者。另外,文中提及的学习资料书籍+Python数据分析高清思维导图分享可以戳这里👉【资料领取通道】免费拿!
Python数据分析学习路线大纲【思维导图】
阶段一:Python编程基础(2-3周)
1.1 Python安装与环境配置
- Python安装:从官网下载并安装最新版Python。
- Anaconda安装(推荐):Anaconda是Python数据科学的首选环境,包含大量常用库。
- Jupyter Notebook基础使用:学习如何创建、运行和保存Notebook,适合数据探索与可视化。
1.2 基础语法
- 变量与数据类型:掌握整数(int)、浮点数(float)、字符串(str)、布尔值(bool)的基本操作。
- 运算符:熟悉算术、比较、逻辑运算符的使用。
- 输入输出:学会使用
print()
输出信息,input()
获取用户输入。
1.3 数据结构
- 列表、元组、字典、集合:理解每种数据结构的特点和应用场景。
- 索引、切片、增删改查:掌握对数据结构的常见操作。
1.4 流程控制
- 条件语句:学会使用
if-elif-else
进行条件判断。 - 循环:掌握
for
和while
循环的使用。
1.5 函数与模块
- 定义函数:学习如何定义和调用函数,理解参数传递。
- 常用内置函数:熟悉
len()
,range()
,zip()
等函数。 - 模块导入:学会使用
import
导入标准库和第三方库。
1.6 文件操作
- 读写文件:使用
open()
,read()
,write()
进行文件操作。 - CSV/JSON文件处理:利用
csv
模块处理CSV文件。
1.7 阶段1项目:个人记账本
- 实现一个简单的记账应用,用户可以输入收入/支出金额和类别,程序保存数据到CSV文件,支持查询历史记录,并计算总收入和总支出,显示余额。
阶段二:数据分析核心库(3-4周)
2.1 NumPy(数值计算)
- 数组创建:使用
np.array()
创建数组。 - 数组运算:掌握数组的加减乘除及广播机制。
- 常用函数:熟悉
np.sum()
,np.mean()
,np.reshape()
等函数。
2.2 Pandas(数据处理)
- Series和DataFrame基础:理解Pandas的数据结构。
- 数据读取:使用
pd.read_csv()
,pd.read_excel()
读取数据。 - 数据清洗:处理缺失值(
dropna()
,fillna()
)。 - 数据筛选:使用
loc[]
,iloc[]
和条件筛选。 - 分组聚合:使用
groupby()
,agg()
进行数据分组和聚合。
2.3 数据可视化(Matplotlib & Seaborn)
- 基础图表:绘制折线图、柱状图、散点图。
- 高级图表:使用Seaborn绘制高级统计图表,如条形图和热力图。
2.4 阶段2项目:电影数据分析
- 分析IMDb或豆瓣电影数据集,计算电影平均评分、最高评分电影,分析不同年份电影数量变化,研究导演与票房的关系。
阶段三:SQL与数据获取(2周)
3.1 SQL基础
- 基本查询:掌握
SELECT
,WHERE
,GROUP BY
,JOIN
等SQL语句。 - 聚合函数:使用
COUNT
,SUM
,AVG
等聚合函数。
3.2 Python操作数据库
- 数据库连接:使用
sqlite3
或pymysql
库连接数据库。 - Pandas执行SQL:使用
pd.read_sql()
执行SQL查询。
3.3 阶段3项目:电商销售数据分析(SQL + Python)
- 从SQL数据库提取数据,计算每月销售额,找出最畅销的产品类别,分析用户复购率。
阶段四:机器学习入门(3-4周)
4.1 机器学习基础
- 监督学习 vs 无监督学习:理解两者的区别和应用场景。
- 训练集/测试集划分:使用
train_test_split
划分数据集。
4.2 常用算法
- 线性回归:用于预测数值。
- 逻辑回归:解决分类问题。
- 决策树 & 随机森林:掌握基本原理和应用。
4.3 模型评估
- 评估指标:准确率、召回率、F1分数。
- 混淆矩阵:使用
confusion_matrix
评估模型性能。
4.4 阶段4项目:房价预测模型
- 基于房屋特征预测房价,进行数据清洗、特征工程,训练线性回归模型,评估预测效果。
阶段五:商业实战项目(2-3周)
5.1 项目示例:电商用户行为分析
- 数据集:用户浏览、购买记录。
- 数据清洗:处理缺失值、异常值。
- 探索性分析(EDA):分析用户购买频率分布、热门商品。
- 用户分群:使用RFM模型计算Recency、Frequency、Monetary,用K-Means聚类划分高价值用户。
- 预测用户流失:用逻辑回归/随机森林预测用户流失。
- 可视化报告:使用Tableau/Power BI制作交互式看板,直观展示分析结果。
- 实战项目数据集地址:
Kaggle(https://www.kaggle.com/)
UCI Machine Learning Repository(https://archive.ics.uci.edu/)
学习资源推荐
书籍:
视频教程:
项目实战:
文中提及的学习资料书籍+Python数据分析高清思维导图分享可以戳这里👉【资料领取通道】或者扫描下方二维码免费拿!