1. 椭圆曲线加法运算
1.1. 问题描述
给定椭圆曲线y2=x3+8y^2=x^3+8y2=x3+8,点P=(1,3)(1, 3)(1,3),求P+P=?

[图片来自: https://www.desmos.com/calculator/fttnxuzryp?lang=zh-TW]
1.2. 解决方案
步骤一: 计算椭圆曲线y2=x3+8y^2=x^3+8y2=x3+8在P点的切线的方程
对椭圆曲线的隐函数在x,y方向上分别求导,有,
2ydy=3x2dx2ydy=3x^2dx2ydy=3x2dx
dydx=3x22y=12\frac{dy}{dx}=\frac{3x^2}{2y}=\frac{1}{2}dxdy=2y3x2=21
代入P点,得到过P点切线的方程
y=12x+52y=\frac{1}{2}x+\frac{5}{2}y=21x+25
步骤二: 计算切线方程与椭圆曲线的第三个交点
联立切线方程和椭圆曲线,得到,
{y=12x+52y2=x3+8\begin{cases}
y=\frac{1}{2}x+\frac{5}{2} & \\
y^2=x^3+8 &
\end{cases}{y=21x+25y2=x3+8
切线方程代入椭圆曲线,得到,
(12x+52)2=x3+8\left ( \frac{1}{2}x+\frac{5}{2}\right )^2=x^3+8(21x+25)2=x3+8
4x3−x2−10x+7=04x^3-x^2-10x+7=04x3−x2−10x+7=0
(x−1)⋅(4x−4)⋅(x+74)=0\left ( x-1 \right )\cdot \left ( 4x-4 \right ) \cdot \left ( x+\frac{7}{4} \right )=0(x−1)⋅(4x−4)⋅(x+47)=0
得到第三个交点: R′=(−74,1698)R'=\left ( -\frac{7}{4}, \frac{\sqrt{169}}{8} \right )R′=(−47,8169)
即,P+P=R=(−74,−1698)\left ( -\frac{7}{4}, -\frac{\sqrt{169}}{8} \right )(−47,−8169)
参考资料
[1. 椭圆曲线的加法运算] https://www.ruanx.net/elliptic-curve/
[2. 椭圆曲线的加法运算] https://zh.wikipedia.org/zh-cn/%E6%A9%A2%E5%9C%93%E6%9B%B2%E7%B7%9A%E7%9A%84%E7%B4%94%E9%87%8F%E4%B9%98%E6%B3%95
599

被折叠的 条评论
为什么被折叠?



