椭圆曲线

本文介绍了椭圆曲线在密码学中的应用,通过计算示例展示了如何在有限域GF(23)上进行点的加法,以及讨论了椭圆曲线上的离散对数问题。椭圆曲线加密算法依赖于杂凑函数,是数字签名和认证的基础,用于确保信息的完整性和发送者的合法性。
摘要由CSDN通过智能技术生成
椭圆曲线上的加法运算定义如下:如果椭圆曲线上的3个点位于同一直线上,
那么它们的和为O。从这个定义出发,
我们可以定义椭圆曲线的加法规则:
0为加法的单位元,对于椭圆曲线上的任何一点P,有P+O=P。
对于椭圆曲线.上的一-点P=(X,y),
,它的逆元为P= ( x,-y)。注意到这里有P+ (- P) =P-P=O


计算xG

相关公式如下:

有限域GF§上的椭圆曲线y² = x³ + ax + b,

若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,

则R(Xr,Yr) = P+Q 由如下规则确定:

Xr = (λ² - Xp - Xq) mod p

Yr = (λ(Xp - Xr) - Yp) mod p

其中

λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q),

λ = (3Xp² + a)/2Yp mod p(若P=Q)

因此,有限域GF(23)上的椭圆曲线y² ≡ x³ + x + 1 (mod 23),

假设以(0,1)为G点,

计算2G、3G、4G…xG等等,

方法如下:

计算2G:  λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12  Xr = (12² - 0 - 0) mod 23 = 6  Yr = (12(0 - 6) - 1) mod 23 = 19  即2G为点(6,19)

计算3G:  3G = G + 2G,即(0,1) + (6,19)  λ = (19 - 1)/(6 - 0) mod 23 = 3  Xr = (3² - 0 - 6) mod 23 = 3  Yr = (3(0 - 3) - 1) mod 23 = 13  即3G为点(3, 13)

也就是说,当给定点P时,“已知数x求点xG的运算”不难,因为有加法的性质,运算起来可以比较快。但反过来,“已知点xG求x的问题”则非常困难,因为只能遍历每一个x做运算。这就是椭圆曲线密码中所利用的“椭圆曲线上的离散对数问题”。

此处x即为私钥,xG即为公钥。

椭圆曲线加密算法原理如下

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值