题解
题目大意 给你n个升序排列的数值 让你建立二叉排序树要求连线的节点间gcd>1 问是否能建立成功
由于是二叉排序树 中序遍历正好是题目所给的升序排列 所以可以划分为若干区间使用区间dp求解
l[i][j]表示区间i到j的元素可以作为节点j+1的左子树 r[i][j]表示区间i到j的元素可以作为节点i-1的右子树
状态转移时枚举区间中点从i到j 如果当前中点可以将区间划分为i ~ m-1和m+1 ~ j并且将这两个区间作为左右子树则可以对当前节点进行转移
如果m可以与i-1连线则区间i到j可以作为i-1的右子树即r[i][j] 如果可以与j+1连线则可以作为j+1的左子树即l[i][j]=1
参考大佬博客
AC代码
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 710;
int a[MAXN], g[MAXN][MAXN]; //g[i][j]表示ij可以连线
int l[MAXN][MAXN], r[MAXN][MAXN]; //l[i][j]表示区间可以作为j+1的左子树 r[i][j]表示区间可以作为i-1的右子树
int gcd(int a, int b)
{
if (!b) return a;
return gcd(b, a % b);
}
int main()
{
#ifdef LOCAL
freopen("C:/input.txt", "r", stdin);
#endif
int n;
cin >> n;
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
g[i][j] = (gcd(a[i], a[j]) > 1);
for (int k = 0; k < n; k++) //区间间距
for (int i = 1; i + k <= n; i++) //区间左端点
{
int j = i + k; //右端点
for (int m = i; m <= j; m++) //枚举中点m 将区间分为左右子树 则父节点一定为l-1或r+1
if ((i == m || l[i][m - 1]) && (m == j || r[m + 1][j])) //m可以将它的左右侧作为左右儿子
{
if (g[i - 1][m]) r[i][j] = 1; //如果m能和i-1连线则区间可以作为i-1的右儿子
if (g[m][j + 1]) l[i][j] = 1; //可以作为j+1的左儿子
}
}
for (int i = 1; i <= n; i++) //如果i可以将它的左右侧作为左右儿子
if ((1 == i || l[1][i - 1]) && (n == i || r[i + 1][n])) cout << "YES" << endl, exit(0);
cout << "NO" << endl;
return 0;
}