题解
树状数组+二分:
使用栈模拟操作。树状数组记录栈内每个数值出现的次数,树状数组用来查询数值1~x的出现次数。
二分查找x位置,找到1~x出现次数和为栈内元素数量/2次的位置,则最小的x为当前栈内的中位数。
multiset法:
维护两个multiset,l和r表示[1, n/2]和[n/2+1, n]大小的元素,保证l内元素<=r内元素,l内元素数量>=r内元素数量,则l最后元素为中位数。
每次插入和删除和l最后元素进行比较如果小于等于则在l中删除,否则在r中删除。最后调整l和r大小使得满足条件。
AC代码
树状数组+二分:
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
const int N = 1e5 + 10;
int c[N]; //树状数组用来统计每个数值出现次数
inline int lowbit(int x)
{
return x & -x;
}
void Add(int x, int v)
{
while (x < N)
c[x] += v, x += lowbit(x);
}
int Ask(int x)
{
int res = 0;
while (x)
res += c[x], x -= lowbit(x);
return res;
}
int main()
{
#ifdef LOCAL
freopen("C:/input.txt", "r", stdin);
#endif
stack<int> stk;
int n, x;
cin >> n;
char cmd[100];
for (int i = 0; i < n; ++i)
{
scanf("%s", cmd);
if (cmd[1] == 'u')
{
scanf("%d", &x);
stk.push(x);
Add(x, 1);
}
else if (cmd[1] == 'o')
{
if (stk.empty())
printf("Invalid\n");
else
{
x = stk.top();
stk.pop();
Add(x, -1);
printf("%d\n", x);
}
}
else
{
if (stk.empty())
printf("Invalid\n");
else
{
int l = 1, r = 1e5, p = 1; //二分查找出现n/2次位置
while (l <= r)
{
int m = l + r >> 1;
int res = Ask(m);
if (res >= (stk.size() + 1) / 2)
r = m - 1, p = m;
else
l = m + 1;
}
printf("%d\n", p);
}
}
}
return 0;
}
multiset法:
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
int main()
{
#ifdef LOCAL
freopen("C:/input.txt", "r", stdin);
#endif
stack<int> stk;
multiset<int> l, r;
int n, x;
cin >> n;
char cmd[100];
for (int i = 0; i < n; ++i)
{
scanf("%s", cmd);
if (cmd[1] == 'u')
{
scanf("%d", &x);
stk.push(x);
if (l.empty() || x <= *l.rbegin())
l.insert(x);
else
r.insert(x);
}
else if (cmd[1] == 'o')
{
if (stk.empty())
printf("Invalid\n");
else
{
int t = stk.top();
stk.pop();
if (t <= *l.rbegin())
l.erase(l.lower_bound(t));
else
r.erase(r.lower_bound(t));
printf("%d\n", t);
}
}
else
{
if (stk.empty())
printf("Invalid\n");
else
printf("%d\n", *l.rbegin());
}
while (l.size() < r.size())
l.insert(*r.begin()), r.erase(r.begin());
while ((int)l.size() - 1 > (int)r.size())
r.insert(*l.rbegin()), l.erase(l.lower_bound(*l.rbegin())); //erase(val)会删除全部相同元素
}
return 0;
}