因为这道题挺有意思的,所以记录下。DLS与其说是二分,倒不如说是贪心。只不过贪心贪成了logn的复杂度了...xixixi(个人理解,不喜请喷...0.0)
如果读者需要了解树状数组知识的,可以点击树状数组
题目链接:树状数组二分 - 题目 - Daimayuan Online Judge
代码:
#include <bits/stdc++.h>
#define pi acos(-1)
#define int long long
#define PII pair<int,int>
#define all(v) v.begin(),v.end()
#define INF 0x3f3f3f3f3f3f3f3f
#define fs(a) cout<<fixed<<setprecision(a)<< //fs(4)(1.0/3)=0.3333//保留a位小数
#define read() freopen("input.txt","r",stdin)
#define output() freopen("output.txt","w",stdout)
#define fast ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std;
const int N=2e6+10;
const int mod = 1e9+7;
const int Mod = 998244353;
typedef unsigned long long u64;
int lowbit(int x){return x&(-x);}
int up(int a,int b){return a<0?a/b:(a+b-1)/b;}// a/b向上取整
int quickpow(int a,int n){int ans=1;while(n){if(n&1){ans*=a,ans%=Mod;}a*=a;a%=Mod;n>>=1;}return ans;}//快速幂
int qc(int a,int b,int p){int ans=0;while(b){if(b&1){ans+=a,ans%=p;}a*=2;a%=p;b>>=1;}return ans;}//快速乘 a*b%p
int n,m;
int a[N],c[N];
inline void add(int pos,int t){
for(int i=pos;i<=n;i+=lowbit(i))
c[i]+=t;
}
inline int query(int s){
int pos=0,t=0;
for(int i=18;i>=0;i--){//从大到小枚举
if(pos+(1<<i)<=n && t+c[pos+(1<<i)]<=s){
pos+=(1<<i);t+=c[pos];
}
}
return pos;
}
inline void solve(){
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>a[i];add(i,a[i]);
}
while(m--){
int op;cin>>op;
if(op==1){
int x,d;cin>>x>>d;
add(x,d-a[x]);
a[x]=d;
}
else{
int x;cin>>x;
cout<<query(x)<<"\n";
}
}
}
signed main(){
fast; solve();
}
这里我主要讲一下贪心策略就行啦。
要求最多项,那么最原始的办法就是暴力枚举。算出sum<=s时,最大项是几。因为前缀和的思想,复杂为O(n)。所以我们可以用树状数组优化成log(n)。
如何可以更快的查询最大项呢?
这里考虑贪心策略。
为什么i是从18开始循环的,额。。。因为2^18已经很大了,如果读者愿意,可以再调大(小)一点点。我们知道,一个数,是可以通过多个2的幂相加得到的。因此,我们选择从大到小进行枚举,每次都考虑最大的,那么结果也会是最大的。