建立二叉树详解版(先序序列+中序序列 && 中序序列+后序序列)

问题一:如何根据先序序列+中序序列建立二叉树?

输入样例:

第一行输入序列长度n,第二行输入n个字符表示二叉树先序遍历的序列,第三行输入n个字符表示二叉树中序遍历的序列

9
ABDGHCEFI
GDHBAECIF

输出样例:

输出二叉树后序遍历的序列。

GHDBEIFCA

思路:

一道非常基础的二叉树问题,而解决这类问题是有模板的。也就是根据遍历顺序来入手,即可解决。在创建左子树和右子树的时候,对边界点会有疑问,我比较推荐自己画一个图,这样可以定位到你要的那个点。(这里数字顺序与遍历无关,只是为了定位到临界点)

ps:题目中的n在实际运用中,可以去掉,通过string.size()来代替即可。
在这里插入图片描述

代码:

#include<bits/stdc++.h>
using namespace std;

/*
	9
	ABDGHCEFI
	GDHBAECIF

	结果:GHDBEIFCA
*/

struct treeNode
{
	char data;
	treeNode* left;			//左孩子
	treeNode* right;		//右孩子
};
// 前序:中左右
// 中序:左中右
void CreateTree_pre_middle(treeNode* &node, string pre_order, string in_order, int pre1, int pre2, int middle1, int middle2)
{
	//前提条件
	if (pre2 >= pre1 && middle2 >= middle1)
	{
		node = new treeNode();
		//第一个是根节点
		node->data = pre_order[pre1];
		//初始化
		node->left = node->right = nullptr;

		//在中序中找到根节点 i 的位置
		int i;
		for (i = middle1; i <= middle2; ++i)
		{
			if (in_order[i] == node->data)
				break;
		}
		//创建左子树和右子树
		//注意这里是:node->left,node->right,不是node
		CreateTree_pre_middle(node->left, pre_order, in_order, pre1 + 1, pre1 + i - middle1, middle1, i - 1);
		CreateTree_pre_middle(node->right, pre_order, in_order, pre1 + i - middle1 + 1, pre2, i + 1, middle2);
	}
}
void post_view(treeNode* node)
{
	if (node == nullptr)	return;
	post_view(node->left);
	post_view(node->right);
	cout << node->data;
}

int main()
{
	int n;
	cin >> n;
	string pre_order, in_order;
	cin >> pre_order >> in_order;
	treeNode* root;
	CreateTree_pre_middle(root, pre_order, in_order, 0, n - 1, 0, n - 1);
	post_view(root);

	return 0;
}

问题二:如何根据中序序列+后序序列建立二叉树?

思路:

和问题一同样的道理,很容易通过中序和后序遍历的顺序来建立二叉树,只要记得二叉树三种遍历顺序,其实这类题很容易进行实现。所以一定要对二叉树的遍历顺序非常了解。(就是模板题)

下面给出代码:

#include<bits/stdc++.h>
using namespace std;

struct treeNode
{
	char data;
	treeNode* left;
	treeNode* right;
};
//中序:左中右
//后序:左右中
void CreateTree_middle_post(treeNode* &node, string middle_order, string post_order, int middle1, int middle2, int post1, int post2)
{
	//先决条件
	if (middle1 <= middle2 && post1 <= post2)
	{
		node = new treeNode();
		//根节点赋值
		node->data = post_order[post2];
		//初始化
		node->left = node->right = nullptr;

		//找根节点 i 的位置
		int i;
		for (i = middle1; i <= middle2; ++i)
		{
			if (middle_order[i] == node->data)
				break;
		}

		//创建左子树和右子树
		//中序:左中右
		//后序:左右中
		CreateTree_middle_post(node->left, middle_order, post_order, middle1, i - 1, post1, post1+i-1 - middle1);
		CreateTree_middle_post(node->right, middle_order, post_order, i + 1, middle2, post1 + i - middle1, post2 - 1);
	}
}

void view_pre(treeNode* node)
{
	if (node == nullptr) return;
	cout << node->data;
	view_pre(node->left);
	view_pre(node->right);
}
int main()
{
	int n;
	string middle, post;
	cin >> n;
	cin >> middle >> post;
	treeNode* root;
	CreateTree_middle_post(root, middle, post, 0, n - 1, 0, n - 1);
	view_pre(root);

	return 0;
}
先序序列中序序列可以用来唯一确定一棵二叉树,这是因为在二叉搜索树中,先序遍历的第一个元素是根节点,中序遍历时根节点总是在左子树遍历结束后、右子树开始之前。 以下是使用递归法将这两个序列转换为二叉树的过程: 1. **先序遍历** (Preorder):首先访问根节点,然后递归地对左子树进行先序遍历,最后对右子树进行先序遍历。 2. **中序遍历** (Inorder):对于左子树,我们需要先做中序遍历,接着访问根节点,最后遍历右子树。 给定两个序列: - 先序遍历序列:`[root, left, right]` - 中序遍历序列:`[left, root, right]` 我们可以按照以下步骤构建二叉树: - **找到根节点**:先序序列的第一个元素是根节点。 - **找到根节点在中序序列的位置**:由于先序是左-根-右,所以可以在中序序列中找到根节点的前驱元素作为左孩子的结束位置。 - **递归创建左右子树**:分别在中序序列的左半部分和剩余部分中,用同样的方法找到左子树和右子树的先序中序序列。 递归函数的伪代码可能像这样: ```python def build_tree(preorder, inorder): if not preorder or not inorder: return None # 根据先序遍历找根节点 root_value = preorder[0] # 找到根节点在中序中的索引 index = inorder.index(root_value) # 递归创建左子树和右子树 root = TreeNode(root_value) root.left = build_tree(preorder[1:index], inorder[:index]) root.right = build_tree(preorder[index + 1:], inorder[index + 1:]) return root ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值