自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(278)
  • 收藏
  • 关注

原创 RAG Food Project

如需 GPU 版 faiss,可用 faiss-gpu 替换 faiss-cpu,但一般 faiss-cpu 兼容性更好。

2025-06-12 20:37:03 217

原创 RAG检索前处理

下面这一段代码(有自定义)使用了自定义的提示模板(PromptTemplate)和输出解析器(LineListOutputParser),而第一段代码只使用了MultiQueryRetriever.from_llm的默认设置。-----------------------------(到此构建向量数据库完成)------------------------------(到此sql生成完成)d. 检索增强(RAG 检索上下文,选出正确的Schema示例)b. 示例对注入(构建 Q→SQL 知识库)

2025-06-12 10:30:12 478

原创 向量数据库

规模与性能超大规模(108+ )、高并发:Milvus、Vespa、Pinecone中小规模(<107 ):Qdrant、Weaviate、Redis运维成本零运维:Pinecone、MongoDB Atlas、Weaviate (Cloud)自研可控:Milvus、FAISS、Vespa功能侧重多模态 Any - to - Any:Weaviate、OpenSearch复杂过滤 & 混合检索:Qdrant、Elasticsearch。

2025-06-10 12:11:52 815

原创 gradio提示词交互sql

【代码】gradio提示词交互sql。

2025-06-09 15:50:24 98

原创 向量嵌入技术(中)

其中 BGE 为 BAAI General Embedding(智源通用嵌入模型 ),M3 代表 Multi - Functionality(多功能性 )、Multi - Linguality(多语言性 )、Multi - Granularity(多粒度性 ) ,该模型由北京智源人工智能研究院开发,是具备多语言、多功能、多粒度特征的语义向量模型。• 多语言性(Multi-Linguality):BGE-M3模型支持超过100种语言,具备强大。多向量检索3种功能,能够灵活应对不同的检索需求。

2025-06-08 10:53:16 402

原创 向量嵌入技术(上)

(Text Embedding Models)性能的综合性排行榜。它由Hugging Face团队推出,旨在提供一个标准化的评测体系,帮助研究者和开发者比较不同嵌入模型在多种任务上的表现。(Massive Text Embedding Benchmark,大规模文本嵌入基准测试)是一个用于评估。代码模型还是chat模型等方面的考量。开源模型Stella。

2025-06-08 09:53:18 287

原创 文本切块技术(Splitter)

将长文本分解成适当大小的片段,以便于嵌入、索引和存储,并提高检索的精确度。可以从模型card和config文件中得知。通过子文本块检索父文本块。上下窗口为3的滑动窗口。从摘要到细节的文档索引。

2025-06-07 21:16:05 394

原创 数据导入技术(文档加载)

print(f'父元素 - {parent.metadata["category"]}: {parent.page_content}')setup_docs.append((current_parent, doc)) # 将父元素和子元素一起存储。current_parent = doc # 更新当前父元素。# current_parent = None # 用于存储当前父元素。# parent_id = None # 初始化 parent_id。# 检查是否是 Title 或 Table。

2025-06-07 17:03:40 734

原创 PDF 转 Markdown

Marker 快速准确地将文档转换为 markdown、JSON 和 HTML。

2025-06-06 10:00:00 493

原创 xlsx文件转csv

2025-06-05 14:32:21 161

原创 通过模型文件估算模型参数量大小

"target_modules": ["q_proj", "v_proj"], // 目标模块。"base_model_name_or_path": "llama-7b" // 基础模型。"r": 8, // LoRA秩。假设基础模型为LLaMA-7B(隐藏层维度=4096),LoRA仅作用于。总参数量 = 65,536 × 2模块 =与文件大小不符,说明实际可能是。

2025-06-04 22:27:08 394

原创 psycopg2-binary、pgvector、 SQLAlchemy、 PostgreSQL四者的关系

安装依赖:pip install sqlalchemy psycopg2-binary pgvector。,共同实现 PostgreSQL 数据库的常规操作和向量检索能力。# SQLAlchemy 模型定义(需 pgvector 的 Vector 类型):适合中小规模(百万级向量)、已使用 PostgreSQL 的场景。# 3. 定义模型(SQLAlchemy + pgvector)PostgreSQL 通过 pgvector 执行向量计算。:适合超大规模(十亿级)、需要分布式和高级向量功能的场景。

2025-06-04 20:50:54 1057

原创 RAG框架思路

支持多种文档加载方式:PyMuPDF、PyPDF、Unstructured文件上传和处理功能文档预览和管理功能。

2025-06-04 11:26:59 285

原创 下载并运行自制RAG框架

通过 Ubuntu 的默认软件源安装,但这种方式安装的版本可能较旧(建议后续通过。:指定服务端口为 8001(默认是 8000)。并安装依赖项的步骤说明。实例(FastAPI 应用对象)。:开发模式,代码修改后自动重启服务。服务启动后,可通过浏览器或工具(如。,并初始化一个前端项目的步骤记录。表示当前已安装的 npm 版本是。的虚拟环境目录,隔离项目依赖。、Postman)访问 API。用户进入前端项目目录后运行了。

2025-06-03 09:43:35 917

原创 OpenRouter使用指南

是一个专注于大模型(LLM)API 聚合和路由的服务平台,旨在帮助开发者便捷地访问多种主流大语言模型(如 GPT-4、Claude、Llama 等),并提供统一的接口、成本优化和智能路由功能。集成多个主流大模型 API(如 OpenAI、Anthropic、Mistral、Google Gemini 等),无需为每个平台单独注册和配置。通过 OpenRouter 的标准化接口调用不同模型,减少代码适配成本。根据模型性能、价格、延迟等自动选择最优的模型或供应商。

2025-06-02 21:00:31 540

原创 LLaMA-Factory - 批量推理(inference)的脚本

scripts/vllm_infer.py 是 LLaMA-Factory 团队用于批量推理(inference)的脚本,基于 vLLM 引擎,支持高效的并行推理。它可以对一个数据集批量生成模型输出,并保存为 JSONL 文件,适合大规模评测和自动化测试。

2025-06-01 17:41:45 515

原创 模型参数与显存相关概念

Adam优化器需存储FP32参数副本+动量+方差(4+2+2=8 bytes/参数)NVIDIA显卡(Turing/Ampere架构)支持FP16加速。模型大小 ≈ 参数量 × 每个参数所占字节数。的GPU(如RTX 4090/A100)AMD显卡需ROCm环境+特定模型支持。(FP16+FP32混合精度)(如A100 80GB)例如:6B模型推理需。

2025-05-30 10:53:40 283

原创 LLaMaFactory - 支持的模型和模板 && 常用命令

多卡训练(使用2张GPU) CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train \ --model_name_or_path meta-llama/Llama3-8B \ --dataset alpaca_en,code_alpaca \ --template llama3 \ --bf16 true \ --deepspeed configs/ds_config.json。,确保模型按Qwen的指令格式处理输入输出(如特殊token和角色标记)。

2025-05-29 17:59:37 1053

原创 LLaMaFactory 微调QwenCoder模型

仓库已经成功克隆下来了。下载QwenCoder模型。

2025-05-29 10:15:47 540

原创 微调数据处理

仅保留UTF-8 格式文件,且所有保留的代码文件长度必须大于20行。安装 tree_sitter_languages 包。使用jupyter进行评分后的数据质量分析。

2025-05-28 21:43:32 653

原创 使用Milvus运行一个Milvus单机版实例

指定一个存储所有数据的文件名,如 "milvus_demo.db"。要创建本地的 Milvus 向量数据库,只需实例化一个。使用Docker运行一个Milvus单机版实例。使用ifconfig查看本机服务器IP地址。下方输出表示连接成功!

2025-05-28 21:31:23 372

原创 Linux 使用 Docker 安装 Milvus的两种方式

Milvus 在 Milvus 资源库中提供了 Docker Compose 配置文件。要使用 Docker Compose 安装 Milvus,只需运行。

2025-05-27 20:11:12 553

原创 Ubuntu安装Docker

如果看到 Hello from Docker!如果不成功请先添加国内镜像源。

2025-05-27 15:17:08 253

原创 构建共有语料库 - Wiki 语料库

中文Wiki语料库主要指的是从中文Wikipedia(中文维基百科)提取的文本数据。维基百科是一个自由的、开放编辑的百科全书项目,覆盖了从科技、历史到文化、艺术等广泛的主题。对于基于RAG的应用来说,把Wiki语料作为一个公有的语料库去更新大模型的知识时效,是非常有价值的,能够极大地提升模型的性能和应用范围。是一个用于从维基百科等维基媒体项目的数据库 dumps 中提取文本的工具。做文本预处理和数据清洗。文件将下载到当前目录下。

2025-05-19 14:10:28 270

原创 大模型数据处理全流程【实战】数据洞察、数据增强、数据清洗

使用大模型生成SFT精调格式数据。

2025-05-14 12:25:01 418

原创 大模型数据处理全流程【理论】

"scene_type": "售中", # 自定义业务标签。"intent": "订单修改" # 自定义业务标签。"answer": "请在订单页面点击...", # 必填。"system_prompt": "你是一名电商客服",同义改写("怎么退款" → "如何申请退货")低质量答案(如"请联系客服"这类无效回复)标签不准确(如"退货"误标为"换货")过采样少数类(如"投诉"类样本不足时)欠采样多数类(如"查询"类样本过多时)

2025-05-14 10:00:40 741

原创 SFT(Supervised Fine-Tuning)精调模式

在大型语言模型(LLM)的精调(Fine-tuning)中,是最常用的方法之一,其核心是通过高质量的指导模型学习特定任务或领域知识。

2025-05-14 09:59:31 452

原创 AI模型开发全流程笔记

使用Hugging Face Datasets库加速处理。-d '{"question":"退货政策是什么"}'命名规范:v1.0_20240520(版本_日期)Batch Size:常规选择16/32/64。移除PII敏感信息(身份证/手机号等)混合训练:4:1(业务数据:通用数据)过拟合:增加Dropout层/早停机制。格式要求:严格QA对形式(1问1答)多样性:覆盖不同表达方式(同义问法)平衡性:问题类型/难度均匀分布。国内:阿里云PAI/百度BML。验证集准确率(关注提升趋势)

2025-05-14 09:52:19 311

原创 提示词设计模板(基于最佳实践)

✅ *"列出5种城市环保措施,并分别说明其对减少碳排放的影响(要求:数据支持+案例)"*2. 周长公式:2*(x + 3x) = 48 → 8x = 48 → x = 6。3. 面积 = 长*宽 = 3x*x = 18*6 = 108cm²。[任务] 需要完成[具体任务目标,如“制定糖尿病患者的饮食清单”][角色] 你是一名[领域专家角色,如“营养师”]**角色**: [指定身份,如“数据分析师”]1. 分步骤说明:[步骤1]、[步骤2]...**参考材料**: [文献/数据来源]

2025-05-13 22:04:14 502

原创 使用 百度云大模型平台 做 【提示词优化】

。

2025-05-13 21:52:48 318

原创 如何快速入门大模型?

将文本、图像等数据转化为多维向量(如[0.2, -0.5, 0.7])存储,通过向量相似度(如余弦相似度)实现高效检索。小模型(如ChatGLM-6B、BLOOM-7B):适合消费级GPU(如RTX 3090)部署。:需考虑显存(如6B模型约需12GB显存)、量化技术(降低精度节省资源)。大模型(如LLaMA-2-70B):需专业级硬件(如A100集群)。:计算词与词的相关性(如"it"指代"cat"还是"dog")。:连接大模型与外部工具(如数据库、API)的"胶水框架"。

2025-05-12 21:41:55 888

原创 获取高德地图JS API的安全密钥和Key的方法

要使用高德地图JavaScript API,您需要获取API Key和安全密钥(securityJsCode)。

2025-05-12 14:56:58 2221

原创 Client 和 Server 的关系理解

server.py 是“工具箱”,负责实现和暴露功能。client.py 是“指挥者”,负责与用户交互、调用工具箱里的功能,并把结果反馈给用户。二者通过 MCP 协议(本例用 stdio 通道)实现解耦和灵活的工具链调用。

2025-05-10 18:41:55 524

原创 MCP项目实例 - client sever交互

构建一个本地智能舆论分析系统。利用自然语言处理和多工具协作,实现用户查询意图的自动理解。进行新闻检索、情绪分析、结构化输出和邮件推送。该函数通过 Serper API 使用关键词从 Google 上搜索获取新闻,返回前五条新闻并保存到本地文件中。函数用于对一段新闻文本或任意内容进行情感倾向分析,并将分析结果保存为 Markdown 格式的报告文件。主要内容功能流程读取大模型配置:从环境变量中加载大模型的 API 密钥、模型名称和服务器地址,用于后续调用语言模型。

2025-05-10 12:05:20 1170

原创 无网络环境下配置并运行 word2vec复现.py

需运行文件。

2025-05-07 22:55:06 379

原创 使用 Gradio + Qwen3 + vLLM 部署 Text2SQL 多表查询系统

Gradio: 提供用户友好的 Web 界面Qwen3: 通义千问的最新开源大模型,擅长文本到SQL转换vLLM: 高效的大模型推理引擎,支持连续批处理和PagedAttention。

2025-05-07 21:32:03 413

原创 本地部署 MySQL + Qwen3-1.5B + Flask + Dify 工作流

进入 Dify 源代码的 Docker 目录。(移除匿名用户、禁止远程 root 登录等)# 在Ubuntu/Debian上安装。选择密码强度验证策略(通常选。# 启动MySQL服务。

2025-05-07 13:53:33 1160

原创 网页版部署MySQL + Qwen3-0.5B + Flask + Dify 工作流部署指南

output += `名称: ${item.name}, 类别: ${item.category}, 价格: ${item.price}, 库存: ${item.stock}\\n`;if (result.length === 0) return "没有找到匹配的结果";let output = "查询结果:\\n";(移除匿名用户、禁止远程 root 登录等)类型:JavaScript处理节点。选择密码强度验证策略(通常选。配置:接收用户的中文查询。配置:显示格式化后的结果。类型:HTTP请求节点。

2025-05-06 21:55:19 1428

原创 Dify - Stable Diffusion

Stable Diffusion 是一种基于文本提示生成图像的工具,Dify 已经实现了访问 Stable Diffusion WebUI API 的接口,因此你可以直接在 Dify 中使用它。你需要从 HuggingFace 或其他来源下载模型,并将其放在 Stable Diffusion WebUI 的 目录中。推荐使用装有较强 GPU 的机器来安装和驱动 Stable Diffusion,但这并不是必须的,你也可以使用 CPU 来生成图像,但速度可能会很慢。,但我们仍然需要获取模型名称,访问。

2025-05-06 14:21:28 590

原创 Dify - Embedding Rerank

运行命令后,你应该会看到类似以下的输出,显示所有容器的状态和端口映射,通过这些步骤,你可以在本地成功安装 Dify。根据你系统上的 Docker Compose 版本,选择合适的命令来启动容器。进入 Dify 源代码的 Docker 目录。命令检查版本,详细说明请参考。启动 Docker 容器。

2025-05-05 22:20:54 846

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除