noip 2018 模拟赛9

T 1 T_1 T1——policy(3115)

Description:

有一个 n ⋅ m n \cdot m nm的矩形,现在有 q q q次询问,每次询问一个 a ⋅ b a \cdot b ab的子矩形,若它的最大值mx,权值和为sum,求 m i n { m x ⋅ a ⋅ b − s u m } min\{mx\cdot a\cdot b-sum\} min{mxabsum}
n , m ≤ 1000 , A i , j ≤ 1 0 9 , q ≤ 10 n,m\le1000,A_{i,j}\le10^9,q\le10 n,m1000,Ai,j109,q10

Solution:

  • 发现这个就是一个无脑的数据结构题
  • 复杂度实在太卡…那么带 log ⁡ \log log的话很容易就挂
  • 所以就想到一些线性的做法,比如单调队列
  • 这样复杂度就是 Θ ( n 2 q ) \Theta(n^2q) Θ(n2q)

Code:

#include<bits/stdc++.h>
using namespace std;
#define REP(i,f,t) for(int i=(f),i##_end_=(t);i<=i##_end_;++i)
#define SREP(i,f,t) for(int i=(f),i##_end_=(t);i<i##_end_;++i)
#define DREP(i,f,t) for(int i=(f),i##_end_=(t);i>=i##_end_;--i)
#define ll long long
template<class T>inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
template<class T>inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
template<class T>inline void Rd(T &x){
	x=0;char c;
	while((c=getchar())<48);
	do x=(x<<1)+(x<<3)+(c^48);
	while((c=getchar())>47);
}

const int N=1002;
#define INF 0x3f3f3f3f3f3f3f3fll

int n,m,q;
int a,b;
int A[N][N],B[N][N],Q[N];
ll sum[N][N];

void solve(){
	ll ans=INF;
	REP(i,1,n){
		int l=0,r=0;
		REP(j,1,m){
			while(l<r && Q[l]<=j-b) ++l;
			while(l<r && A[i][Q[r-1]]<A[i][j]) --r;
			Q[r++]=j;
			B[i][j]=A[i][Q[l]];
		}
	}
	
	REP(j,b,m){
		int l=0,r=0;
		REP(i,1,n){
			while(l<r && Q[l]<=i-a) ++l;
			while(l<r && B[Q[r-1]][j]<B[i][j]) --r;
			Q[r++]=i;
			if(a<=i){
				ll x=sum[i][j]-sum[i-a][j]-sum[i][j-b]+sum[i-a][j-b];
				ll y=1ll*B[Q[l]][j]*a*b;
				chkmin(ans,y-x);
			}
		}
	}
	printf("%lld\n",ans);
}

int main(){
//	freopen("policy.in","r",stdin);
//	freopen("policy.out","w",stdout);
	Rd(n),Rd(m);
	REP(i,1,n) REP(j,1,m)Rd(A[i][j]),sum[i][j]+=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+A[i][j];
	
	Rd(q);
	while(q--)Rd(a),Rd(b),solve();

	return 0;
}

T 2 T_2 T2——ricehub(3074)

Description:
在一条 x x x轴上,有 n n n个米仓,每个米仓的的粮食都是 1 1 1,且知道它们的位置 p i p_i pi,以及坐标范围 L L L。问在某个点建一个仓库,在总花费不超过 B B B的情况下,求最大的仓库粮食量,一粮食每一单位的运费为 1 1 1
n ≤ 1 0 6 , L ≤ 1 0 9 , B ≤ 2 ⋅ 1 0 15 n\le10^6,L\le10^9,B\le2\cdot 10^{15} n106,L109,B21015

Solution:

  • 首先有一个 O ( n 3 ) O(n^3) O(n3)的做法
  • 因为仓库只对一个区间 [ l , r ] [l,r] [l,r]的米仓有影响
  • 模拟数据发现,它对花费的最优贡献一定是 ( p r − p l ) + ( p r − 1 − p l + 1 ) . . . + ( p m i d + 1 − p m i d − 1 ) (p_r-p_l)+(p_{r-1}-p_{l+1})...+(p_{mid+1}-p_{mid-1}) (prpl)+(pr1pl+1)...+(pmid+1pmid1)
  • 即仓库要建在中位数时最优。
  • 那么对于每个左端点 i i i,我们可以线性找到它的右端点 j j j,再利用前缀和求一个最优花费是否超过 B B B即可。

Code:

#include<bits/stdc++.h>
using namespace std;
#define REP(i,f,t) for(int i=(f),i##_end_=(t);i<=i##_end_;++i)
#define SREP(i,f,t) for(int i=(f),i##_end_=(t);i<i##_end_;++i)
#define DREP(i,f,t) for(int i=(f),i##_end_=(t);i>=i##_end_;--i)
#define ll long long
template<class T>inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
template<class T>inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
template<class T>inline void Rd(T &x){
	x=0;char c;
	while((c=getchar())<48);
	do x=(x<<1)+(x<<3)+(c^48);
	while((c=getchar())>47);
}

const int N=1e5+2;

int n,L;
ll B;
int p[N];

struct p20{
	void solve(){
		int ans=0;
		REP(i,1,n) REP(j,i+1,n) {
			int l=i,r=j;
			ll sum=0;
			while(l<r) sum+=p[r]-p[l],l++,r--;
			if(sum<=B) chkmax(ans,j-i+1);
		}
		printf("%d\n",ans);
	}
}p1;

struct p100{
	ll sum[N];
	bool check(int l,int r){
		int mid=(l+r)>>1;
		ll cost=1ll*p[mid]*(mid-l+1)-(sum[mid]-sum[l-1])+sum[r]-sum[mid]-1ll*p[mid]*(r-mid);
		return cost<=B;
	}
	
	void solve(){
		REP(i,1,n) sum[i]=sum[i-1]+p[i];
		int j=1,ans=0;
		REP(i,1,n){
			while(j<=n && check(i,j)) ++j;
			chkmax(ans,j-i);
		}
		printf("%d\n",ans);		
	}
}p2;

int main(){
//	freopen("ricehub.in","r",stdin);
//	freopen("ricehub.out","w",stdout);
	Rd(n),Rd(L),Rd(B);
	REP(i,1,n) Rd(p[i]);
	
//	if(n<=100)p1.solve();//O(n^3)
//	else 
	p2.solve();
	
	return 0;
}

T 3 T_3 T3——war(3117)

Description:

有一个 n n n个点, m m m条边的图,每个点都有颜色,颜色种类的范围为 [ 1 , K ] [1,K] [1,K]
现在有 q q q个操作,每个操作将点 x x x的颜色改为 k k k,在每个操作后求不同颜色的最小距离。
n ≤ 2 ⋅ 1 0 5 , m ≤ 4 ⋅ 1 0 5 , K ≤ 1 0 6 , q ≤ 2 ⋅ 1 0 5 , w i ≤ 1 0 6 n\le2\cdot 10^5,m\le4\cdot 10^5,K\le10^6,q\le2\cdot 10^5,w_i\le10^6 n2105,m4105,K106,q2105,wi106

Solution:

  • 对于这个 n n n 2 ⋅ 1 0 5 2\cdot10^5 2105的图,大概已经没有什么图论算法可以解决问题了
  • 而且我们发现答案一定是给定的某一边的边权
  • 对于暴力的做法( Θ ( m l log ⁡ m q ) \Theta(ml\log m q) Θ(mllogmq)),我们是将边权排序,找最小不同颜色的边
  • 而将边排序,我们很容易联想到最小生成树,那么答案是不是一定在最小生成树上呢?
  • 我们可以来反证一下
  • 若答案是一条非树(最小生成树)边,那么该边的两点颜色不同,且这两点之间一定有树边,且这些树边的边权一定比这条非树边小,且一定会有至少一条不同颜色的点的边。
  • 这样,我们可以用线段树来维护树上每个点与它颜色为 c c c的儿子的最小距离。
  • 但是操作还要修改,就需要用一个全局的 m u l t i s e t multiset multiset来维护答案。
  • 这样复杂度是 Θ ( n log ⁡ n ) \Theta(n\log n) Θ(nlogn)

Code

#include<bits/stdc++.h>
using namespace std;
#define REP(i,f,t) for(int i=(f),i##_end_=(t);i<=i##_end_;++i)
#define SREP(i,f,t) for(int i=(f),i##_end_=(t);i<i##_end_;++i)
#define DREP(i,f,t) for(int i=(f),i##_end_=(t);i>=i##_end_;--i)
#define ll long long
template<class T>inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
template<class T>inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
template<class T>inline void Rd(T &x){
	x=0;char c;
	while((c=getchar())<48);
	do x=(x<<1)+(x<<3)+(c^48);
	while((c=getchar())>47);
}

const int N=2e5+2,INF=0x3f3f3f3f;

int n,m,K,q;
int col[N];

struct node{
	int x,y,w,id;
	bool operator<(const node &_)const{
		return w<_.w;
	}
}em[N<<1];

struct p40{
	void solve(){
		while(q--){
			int x,k;
			Rd(x),Rd(k);
			col[x]=k;
			REP(i,1,m){
				if(col[em[i].x]==col[em[i].y])continue;
				printf("%d\n",em[i].w);
				break;
			}
		}
	}
}p1;

struct p100{
	
	int fa[N];
	int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
	
	int qwq,head[N];
	struct edge{
		int to,nxt,w;	
	}E[N<<1];
	void addedge(int x,int y,int z){E[qwq]=(edge){y,head[x],z};head[x]=qwq++;}
	
	int Fa[N],dis[N];
	
	int res[N];
	multiset<int>ans;
	
	int tim,rt[N];
	int Lson[N*40],Rson[N*40],Mn[N*40];
	int cnt,Id[N*40];//叶子
	multiset<int>Leaf[N<<1];
	
	void Update(int l,int r,int x,int w,int op,int &p){
		if(!p) p=++tim,Mn[p]=INF;
		if(l==r){
			if(!Id[p])Id[p]=++cnt,Leaf[Id[p]].insert(INF);
			if(op)Leaf[Id[p]].insert(w);
			else Leaf[Id[p]].erase(Leaf[Id[p]].find(w));
			Mn[p]=*Leaf[Id[p]].begin();
			return; 
		}
		int mid=(l+r)>>1;
		if(x<=mid)Update(l,mid,x,w,op,Lson[p]);
		else Update(mid+1,r,x,w,op,Rson[p]);
		chkmin(Mn[p]=Mn[Lson[p]],Mn[Rson[p]]);
	}
	
	int Query(int l,int r,int L,int R,int p){
		if(!p || L>R)return INF;
		if(l==L && r==R) return Mn[p];
		int mid=(l+r)>>1;
		if(R<=mid)return Query(l,mid,L,R,Lson[p]);
		else if(L>mid)return Query(mid+1,r,L,R,Rson[p]);
		else return min(Query(l,mid,L,mid,Lson[p]),Query(mid+1,r,mid+1,R,Rson[p]));
	}
	
	void dfs(int x){
		for(int i=head[x];~i;i=E[i].nxt){
			int y=E[i].to;
			if(y==Fa[x])continue;
			Fa[y]=x;
			Update(1,K,col[y],dis[y]=E[i].w,1,rt[x]);
			dfs(y);
		}
	}
	
	void solve(){

		REP(i,1,n)fa[i]=i;
		memset(head,-1,sizeof(head));
		int num=0;
		REP(i,1,m){
			int x=em[i].x,y=em[i].y;
			int fx=find(x),fy=find(y);
			if(fx!=fy){
				fa[fx]=fy;
				addedge(x,y,em[i].w);
				addedge(y,x,em[i].w);
				++num;
			}
			if(num==n-1)break;
		}

		Mn[0]=INF;
		dfs(1);
		REP(i,1,n) res[i]=min(Query(1,K,1,col[i]-1,rt[i]),Query(1,K,col[i]+1,K,rt[i])),ans.insert(res[i]);
		
		while(q--){
			int x,k;
			Rd(x),Rd(k);
			
			ans.erase(ans.find(res[x]));
			res[x]=min(Query(1,K,1,k-1,rt[x]),Query(1,K,k+1,K,rt[x]));
			ans.insert(res[x]);
			
			if(x!=1){
				int f=Fa[x];
				ans.erase(ans.find(res[f]));
				Update(1,K,col[x],dis[x],0,rt[f]),Update(1,K,k,dis[x],1,rt[f]);
				res[f]=min(Query(1,K,1,col[f]-1,rt[f]),Query(1,K,col[f]+1,K,rt[f]));
				ans.insert(res[f]);
			}
			
			col[x]=k;
			printf("%d\n",*ans.begin());
		}
	}
}p2;	

int main(){
//	freopen("war.in","r",stdin);
//	freopen("war.out","w",stdout);
	Rd(n),Rd(m),Rd(K),Rd(q);
	REP(i,1,m){
		int a,b,c;
		Rd(a),Rd(b),Rd(c);
		em[i]=(node){a,b,c,i};
	}
	REP(i,1,n) Rd(col[i]);
	sort(em+1,em+1+m);
		
	if(m<=10000 && q<=10000)p1.solve();//O(mlogm+mq)
	else p2.solve();//O(nlogn)
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值