C/C++ 最短路径—Spfa-Bellman-Ford算法 (路径的保存和输出&负边判断)

一、最短路径

  • 最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
  • 算法具体的形式包括:
    • 确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题。
    • 确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
    • 确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
    • 全局最短路径问题 - 求图中所有的最短路径。
  • 但是 Dijkstra算法 和 Floyd算法 都不能够判断负边,所以引入Spfa-Bellman-Ford算法,Spfa算法是经过队列优化后的Bellman-Ford算法。一下均称Spfa算法。

二、Spfa-Bellman-Ford算法(贝尔曼-福德优化算法)

算法步骤(邻接表)

初始化:

  • 将v0到各个终点的最短路径长度初始化为一个极大值INF,即dis[i] = INF ;
  • 初始化记录路径的数组road,即road[i] = -1;
  • 初始化计算负权边数组ngt,即ngt[i] = 0;
  • 将源点v0压入到队列q中, road[v0] = v0, dis[v0] = 0;

遍历队列q,执行以下操作:

  • 取队首元素为temp,并弹出;
  • 遍历vtemp邻接的所有边。
  • 选择邻接边的另一个顶点vk,如果 dis[i] + G.edge[i].cost < dis[k] 成立,则更新 dis[k] = dis[i]+G.edge[i].cost,同时更改 vk 的前驱为 vi; road[k] = i;
  • 如果dis[vk]被更新,则把k压入队列,同时检查ngt[++k]的值,如果值大于G.vex,则存在负权边。

三、举个栗子(14369 最短路

Description

给定一个有n个顶点(从1到n编号),m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路。

Input

  • 第一行两个整数n, m。
  • 接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

Output

  • 共n-1行,第i行表示1号点到i+1号点的最短路。

Sample Input

3 3
1 2 -1
2 3 -1
3 1 2

Sample Output

-1
-2

More Info

  • 对于10%的数据,n = 2,m = 2。
  • 对于30%的数据,n <= 5,m <= 10。
  • 对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。(我开到500k才A了,这题目能不能给个阳间数据范围)

code

详见注释

#include <iostream>
#include <cstring>
#include <queue>
#define INF 0xf
#define Max 500003

using namespace std;

typedef struct Edge {				//定义边表结点
	int adv, next, cost;			//后驱结点、下一条边、权值
};

typedef struct AMGragh {			//定义图
	int vex, arc;
	Edge edge[Max];					//边表
};

int path[Max], dis[Max], ngt[Max];	//path数组记录每个顶点的下一条边位置,dis数组记录最短路,ngt数组记录入队次数
bool book[Max];						//定义访问标记数组
int road[Max] = { -1 };

bool spfa(AMGragh &G)				//Spfa-Bellman-Ford算法
{
	queue<int> q;					//STL

	q.push(1);						//将起点放入队列
	book[1] = true;					//修改起点标记值
	dis[1] = 0;						//起点初始化
	while (!q.empty())
	{
		int x, t;
		x = q.front();				//取队首元素
		q.pop();					//出队
		book[x] = false;			//修改标记值

		for (int i = path[x]; i; i = G.edge[i].next)	//遍历顶点x邻接的所有边
		{
			t = G.edge[i].adv;
			if (dis[t] > dis[x] + G.edge[i].cost) {		//松弛操作
				dis[t] = dis[x] + G.edge[i].cost;
				road[t] = x;
				if (!book[t]) {							//如果t点没在队列中,则压入队列
					q.push(t);
					book[t] = true;
					ngt[t]++;
					if (ngt[t] > G.vex) return false;	//判断是否存在负边
				}
			}
		}
	}
	return true;
}

void find(int x)									//递归输出最短路径
{
	if (road[x] == 1) {
		cout << 1;
	}
	else {
		find(road[x]);
	}
	cout << " -> " << x;
	return;
}

void putin(AMGragh &G)					//输入
{
	int u, v, w;

	cin >> G.vex >> G.arc;

	for (int i = 1; i <= G.arc; i++)
	{
		cin >> u >> v >> w;
		G.edge[i].adv = v;
		G.edge[i].next = path[u];
		G.edge[i].cost = w;
		path[u] = i;
	}
}

void putout(AMGragh &G)					//输出
{
	if (!spfa(G)) {
		cout << "存在负环";
	}
	else {
		for (int i = 2; i <= G.vex; i++)
			cout << dis[i] << endl;
		/*	cout << dis[i] << " ";
		cout << endl;
		for (int i = 2; i <= G.vex; i++)
		{
		cout << "起点 v1 到 v" << i << " 的路径为: ";
		find(i);
		cout << endl;
		}*/
	}
}

int main()
{
	memset(dis, INF, sizeof(dis));
	memset(ngt, 0, sizeof(ngt));
	memset(book, false, sizeof(book));
	AMGragh G;

	putin(G);
	putout(G);
	return 0;
}

运行截图

去注释打印路径结果
Alt


蒟蒻一只,欢迎指正

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值