(鼠鼠)真的学不懂(2025年考的)!记录一下之前的复习的部分内容和重点(速通出来87)
基于每章结尾要求和最后ppt+习题课ppt++辅导书主要内容快速梳理
真的,自学ok的(应付考试)
有一些基本必考
绪论基础定义
-
信息量以及相关定义(给出所有单位概念):
信息量单位:2为底时为bit,e为底为奈特
信源熵H(x):离散独立消息平均信息量(信息量加权和)单位:bit/符号
码元传输速率:单位时间(每秒)内b系统传输的码元符号的数目,单位为波特(Baud) R B R_{\mathbf{B}} RB- 如果一个三位二进制数(例如,000, 001, 010, …, 111)作为一个整体来表示一个符号,那么这三位二进制数就是一个码元,该情况下一个码元包括3bit信息(用下面的推,8个码元种类)
信息传输速率:单位时间(每秒)内系统传输的信息量多少。单位bit/s。 R b R_{\mathbf{b}} Rb。 R b = R B l o g 2 M R_{b}=R_{B}\,l{o}g{2}\,M Rb=RBlog2M。M为码元种类
- 如果一个三位二进制数(例如,000, 001, 010, …, 111)作为一个整体来表示一个符号,那么这三位二进制数就是一个码元,该情况下一个码元包括3bit信息(用下面的推,8个码元种类)
-
信道容量:
- 信息无差错传输的最大速率
- 香农公式:
C = B log 2 ( 1 + S / N ) C=B\log_{2}\left(1+S/N\right) C=Blog2(1+S/N)
单位上:C:b/s B:Hz S/N:数值比不是分贝比- 公式意义:
1、C一定时,B和S/N可以互换(扩频通信基础)
大带宽,低信噪比,或者反之
2、若信源速率R(信息传输速率)小于等于C则理论上可实现无差错传输,若大于C则理论上无法实现无差错传输
- 公式意义:
- H(x)为信源平均信息量(信源熵)
单位:比特/符号- 独立的时候大于相关的,独立且等概的时候平均信息量最大
I = I o g 2 ( 1 P ) = log 2 M I=\mathrm{Io}\mathrm{g}_{\mathrm{2}}\!\left(\frac{1}{P}\!\!\right)=\log_{2}M I=Iog2(P1)=log2M M:事件数/码元种类数 含义
- 独立的时候大于相关的,独立且等概的时候平均信息量最大
- C = maxR
- R(信息传输速率
R
b
R_{\mathbf{b}}
Rb) = rH(x)
r为信源每秒发送的符号个数(符号速率)
- R(信息传输速率
R
b
R_{\mathbf{b}}
Rb) = rH(x)
-
通信系统基本模型(需要了解数字和模拟的框图结构)
- 模拟通信系统:
- 性能指标:
可靠性:信噪比S/N
有效性:带宽
- 性能指标:
- 模拟通信系统:
-
数字通信系统:
抗干扰能力好,体积小,便于加密
-
性能指标:
可靠性:误码率,误信率
有效性:码元传输速率;信息传输速率;系统频带利用率(b/s/Hz) -
数字通信系统组成部分的功能 (基本必考)
-
经典例题:
确定信号分析
频谱分析方法(就是傅里叶分析方法) 简单知道就行
信号能量和相关性
- 能量信号:
- 在时域上有始有终能量有限的信号 E = ∫ − ∞ ∞ x 2 ( t ) d t < ∞ E = \int_{-\infty}^{\infty} x^2(t) \mathrm{d}t < \infty E=∫−∞∞x2(t)dt<∞
- 能量谱密度函数:
G ( ω ) = ∣ X ( ω ) ∣ 2 G(\,\omega\,)\;=\;\mid X(\,\omega\,)\;\mid^{2} G(ω)=∣X(ω)∣2
能量信号x(t)的能量相当于G(w)频域中积分值
E = 1 2 π ∫ − ∞ ∞ G ( ω ) d ω = 2 ∫ 0 ∞ G ( f ) d f E\;=\;\frac{1}{2\,\pi}\!\int_{-\,\infty}^{\infty}\,G(\,\omega\,)\,\mathrm{d}\omega\;=\;2\int_{0}^{\infty}\,G(f)\,\mathrm{d}f E=2π1∫−∞∞G(ω)dω=2∫0∞G(f)df - 自/互相关函数:
R 12 ( τ ) = ∫ − ∞ ∞ x 1 ( t ) ⋅ x 2 ( t + τ ) d t R_{12}(\tau) = \int_{-\infty}^{\infty} x_{1}(t) \cdot x_{2}(t+\tau) \, \mathrm{d}t R12(τ)=∫−∞∞x1(t)⋅x2(t+τ)dt- 性质:
有序性: R 12 ( τ ) = R 21 ( − τ ) R_{12}\left(\,\tau\,\right)\:=R_{21}\left(-\tau\right) R12(τ)=R21(−τ)
偶函数
R(0)代表信号能量,是最大值,自相关性最强 - 能量信号的自相关函数和功率谱密度函数G(w)是一对傅里叶变化对
R 12 ( τ ) ⇔ X 1 ∗ ( ω ) ⋅ X 2 ( ω ) R_{12}\left(\,\tau\,\right) \Leftrightarrow X_{1}^{\ast}\left(\,\omega\,\right) \cdot X_{2}\left(\,\omega\,\right) R12(τ)⇔X1∗(ω)⋅X2(ω) 公式推导出来
- 性质:
- 功率信号:
- 信号平均功率:(周期信号为一个周期内截断)
P = lim T → ∞ 1 T ∫ − T 2 T 2 x 2 ( t ) d t = lim T → ∞ 1 T ∫ − ∞ ∞ x T 2 ( t ) d t P~=~\operatorname*{lim}_{T\to\infty}~{\frac{1}{T}}\int_{-{\frac{T}{2}}}^{\frac{T}{2}}x^{2}\left(\,t\,\right)\operatorname{d}\!t~=~\operatorname*{lim}_{T\to\infty}~{\frac{1}{T}}\int_{-\infty}^{\infty}x_{T}^{2}\left(\,t\,\right)\operatorname{d}\!t P = limT→∞ T1∫−2T2Tx2(t)dt = limT→∞ T1∫−∞∞xT2(t)dt - 功率谱密度函数:
P ( ω ) = lim T → ∞ ∣ X T ( ω ) ∣ 2 T P(\,\omega\,)\,=\operatorname*{lim}_{T\rightarrow\infty}\frac{\left|\,X_{T}(\,\omega\,)\,\right|^{2}}{T} P(ω)=limT→∞T∣XT(ω)∣2 - 对于周期信号使用 P(w) = |S(w)|^2 (后面第九章对应内容,ASK调制时)
- 功率也是功率谱密度函数在频域的积分,参考上面能量信号的式子
- 周期信号的功率谱密度:
P ( ω ) = 2 π ∑ n = − ∞ ∞ ∣ C n ∣ 2 δ ( ω − n ω 0 ) P(\,\omega\,)\ =\ 2\,\pi\sum_{n\,=\,-\infty}^{\infty}\mid C_{n}\mid^{2}\delta(\,\omega\,-\,n\omega_{0}\,) P(ω) = 2π∑n=−∞∞∣Cn∣2δ(ω−nω0) 其中Cn是傅里叶级数系数
积分结果是P为Cn的平方和,对应帕斯瓦尔定理 - 自/互相关函数:
R 12 ( τ ) = lim T → ∞ 1 T ∫ − T 2 T 2 x 1 ( t ) x 2 ( t + τ ) d t R_{12}\left(\tau\right)~=~\operatorname*{lim}_{T\rightarrow\infty}\frac{1}{T}\!\int_{-\frac{T}{2}}^{\frac{T}{2}}\!\!\!x_{1}\left(\,t\,\right)x_{2}\left(\,t\,+\,\tau\right)\mathrm{d}t R12(τ) = limT→∞T1∫−2T2Tx1(t)x2(t+τ)dt
对于周期信号而言:= 1 T 0 ∫ τ 0 2 τ 0 2 x ( t ) x ( t + τ ) d t {\frac{1}{T_{0}}}{\int}_{\frac{\tau_{0}}{2}}^{\frac{\tau_{0}}{2}}x(\,t)\,x(\,t\,+\,\tau)\,\mathrm{d}t T01∫2τ02τ0x(t)x(t+τ)dt 取一个周期 - 功率信号自相关函数和功率谱是一对傅里叶变换对
P χ ( ω ) = ∫ − ∞ ∞ R χ ( τ ) e − j ω τ d τ P_{\chi}(\omega)=\int_{-\infty}^{\infty}R_{\chi}(\tau)\mathrm{e}^{-\mathrm{j}\omega\tau}\mathrm{d}\tau Pχ(ω)=∫−∞∞Rχ(τ)e−jωτdτ
- 信号平均功率:(周期信号为一个周期内截断)
信号带宽
- 绝对带宽
能量分布的范围,最大减最小 - 3dB带宽
功率变为最大值一半(电压变为二分之根2)的大减小 - 零点带宽
从f0出发,第一次零点出现的两边两个值,大减小 - 等效矩形带宽
能量信号: B = ∫ − ∞ ∞ G ( f ) d f / 2 G ( 0 ) B\ =\ \int_{-\infty}^{\infty}\,G(f)\,\mathrm{d}f\!/2\,G(\,0\,) B = ∫−∞∞G(f)df/2G(0)
功率信号: B = ∫ − ∞ ∞ P ( f ) d f / 2 P ( 0 ) B\ =\ \int_{-\infty}^{\infty}\,P(f)\,\mathrm{d}f\!/2\,P(\,0\,) B = ∫−∞∞P(f)df/2P(0) 功率谱密度积分 - 百分比带宽(能量带宽)
希尔伯特变换
了解复数信号定义,-pi/2相移网络和对用时域表达式和计算就行
窄带信号
- 定义:带宽远小于中心频率的系统
题目考虑频谱搬移方法就行,记住门函数的傅里叶变化和相关计算方法
随机信号分析
随机过程基本概念和数字特征
- 概念:取值随机变化的时间函数,是随时间变化的随机变量集合(由全部可能的实现构成)
数字特征:(都是需要取特定的t数进行讨论)
- 期望: 也可直接从E出发,分析随机变量(无ff时)
- 方差: σ 2 ( t ) = E [ X 2 ( t ) ] − E 2 [ X ( t ) ] \sigma^{2}\left(\,t\,\right)\:=\:E[\,X^{2}\left(\,t\,\right)\:]\:-\:E^{2}[\:X(\,t\,)\,] σ2(t)=E[X2(t)]−E2[X(t)]
- 自相关函数
- 协方差函数
平稳随机过程的定义和含义以及性质
- 定义:任意n维概率密度函数与起点无关的随机过程
- 含义:统计特性不随时间的变化而变化,统计特性是平稳的
平稳随机过程的统计特征:
- 概率密度函数只和时间间隔有关(如果一维就不考虑“间隔”,就是时间无关)
- 方差和均值是常数
- 自相关函数也只和时间间隔tau有关
平稳随机过程自相关函数的性质
- 关于时间间隔tau的偶函数
- 自相关函数递减且0最大 (原本只是自相关不一定递减)
- 物理含义记住
广义和狭义随机过程的概念辨析清楚
各态经历性
- 对随机过程中的任意一实现(样本函数),好像经历了随机过程中所有可能的状态一样
- 条件:满足自相关函数在整个时间区间内的平均值是零就行
平稳随机过程自相关函数和功率谱密度关系:(维纳辛钦定理)
平稳随机过程通过线性系统的计算
- 数学期望: y = a*H(0)
- 功率谱密度表达式
窄带噪声
引入:白噪声:
-
白噪声的双边功率谱密度为n0/2 n0为单位带宽内的噪声功率,自相关函数则是在0处的冲激,如图:
[[Pasted image 20250101145249.png]] 相关傅里叶变换牵扯到时域冲激对应频域1,时域1对应频域2pi冲激(和冲激函数的定义式子有关,傅里叶变换) -
窄带噪声 定义:加性高斯白噪声通过窄带线性系统后输出噪声为窄带噪声
-
功率谱密度: P n 1 ( ω ) = P ( ω ) ∣ H ( ω ) ∣ 2 = n 0 2 ∣ H ( ω ) ∣ 2 P_{n_{1}}(\omega)=P(\,\omega\,)\mid H(\omega)\mid^{2}={\frac{n_{0}}{2}}\mid H(\,\omega\,)\mid^{2} Pn1(ω)=P(ω)∣H(ω)∣2=2n0∣H(ω)∣2
-
功率: N i = ∫ − ∞ ∞ P n i ( f ) d f = n 0 B N_{\mathrm{i}}=\int_{-\infty}^{\infty}P_{n_{\mathrm{i}}}(f)\,\mathrm{d}f\;=\;n_{0}B Ni=∫−∞∞Pni(f)df=n0B
-
波形特征:准正弦波(包络的频率接近f0一样)
信号设计导论
信息设计的本质是寻找和设计合理的信息单元使得能从随机白噪声的干扰中检测出来,分辨出来
- 设计原则:输出端信号在判决时有最大信噪比,信号单元有尖锐的自相关函数(脉冲压缩特性),信号单元之间的互相关性很小,具有良好分辨性
匹配滤波器设计
PPT例题
- 设计目的:使滤波器和输入信号匹配,在t0时刻的输出有最大的信噪比
- 匹配条件:模匹配和相位匹配
- 设计结果(传递函数)
- 输出相应
例题:
- 设计对应后面的门函数
m序列
- 定义:循环周期最长的线性反馈移位寄存器序列 (是周期序列信号单元和伪随机序列)
- 案例解释C为{011}时,新的D₁值 = c₁D₁ ⊕ c₂D₂ ⊕ c₃D₃,D2就是上一个D1,D3就是上一个D2(和c无关!!!!) 结合流程图理解
[[Pasted image 20241226205858.png]]
具体而言:D₁(t) = c₁D₁(t-1) ⊕ c₂D₂(t-1) ⊕ c₃D₃(t-1) ⊕ c₄D₄(t-1) 是一定的,不会说和C取值有关
c只是决定与运算部分是否有反馈回去模二加
ak也就是d1 - 判断方法:带入D去尝试可能性
最大可能周期是 2ⁿ-1 (肯定是没有0000的,从0001开始尝试)
如果要达到最大周期,C必须包含偶数个1
计算移动的时候除了第一个计算,别的整体往右下方移动就可 - 多项式的解读方法:通过L知道n,从而知道分解后取的多项式的次数最高为-n。然后表达式中z的负几次方对应的就是C几的系数 (常数1不计入)
例题:
- 构成周期长度为7的m序列发生器并说明相关特性
幅度调制
基带信号:
- 信源产生的原始信号,具有较低的频谱分量,也称为调制信号(f(t))
调制:
- 按照基带信号的变化规律去改变载波的某些参数,得到已调信号。解调是通过载波的参数变化去恢复基带信号
调制的功能:
- 频率变换,将基带信号频谱搬移到载波位置,与信道传输特性匹配
- 实现信道的复用,实现多路信号同时传输
门限效应:
- 由于输入信噪比下降引起系统输出信噪比急剧恶化的线性,开始出现门限效应的输入信噪比为门限值
- 大信噪比:当输出信噪比比输入信噪比大得多的时候,包络解调和同步解调的性能几乎相同
AM标准幅度调制
时域表达式:
- S A M ( t ) = [ A 0 + f ( t ) ] cos ω 0 t S_{\mathrm{AM}}\left(\,t\,\right)\,=\left[\,A_{0}\,+f(\,t\,)\,\right]\cos\omega_{0}t SAM(t)=[A0+f(t)]cosω0t
- 其中m为f(t)最大值和A0的比值,应该小于1大于0
频域表达式:
- S A M ( ω ) = π A 0 [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] + 1 2 [ F ( ω − ω 0 ) + F ( ω + ω 0 ) ] S_{\mathrm{{AM}}}(\omega)=\pi A_{0}[\,{\delta}(\omega-\omega_{0})\,+\,{\delta}(\omega+\omega_{0})\,]\,+\frac{1}{2}[\,F(\omega-\omega_{0})\,+F(\,\omega+\omega_{0})\,] SAM(ω)=πA0[δ(ω−ω0)+δ(ω+ω0)]+21[F(ω−ω0)+F(ω+ω0)]
信号带宽:
- B = 2fmax
调制和解调系统框图:(这部分都是,看书对应的就行)
- 调制
- 相干解调 感觉是配出cos方然后用公式分出常量
- 包络解调:利用电容充放电
信号功率分析:
- 信号的两个边带功率之和为调制信号f(t)一半
- 调制效率:
- 取调制信号为余弦,最大值Am。调制效率最大1/3
哟应用:
- 地面的无线广播系统
DSB调制
时域表达式:
- S D S B ( t ) = f ( t ) c o s ω 0 l \mathrm{S}_{\mathrm{DSB}}\!\left(\,t\,\right)\,=f\!\left(\,t\,\right)\mathrm{cos}\omega_{0}l SDSB(t)=f(t)cosω0l
频域表达式:
- S D S B ( ω ) = 1 2 [ F ( ω − ω 0 ) + F ( ω + ω 0 ) ] S_{\mathrm{DSB}}(\omega)=\frac{1}{2}[F(\,\omega-\omega_{0}\,)\,+F(\,\omega+\omega_{0}\,)\,] SDSB(ω)=21[F(ω−ω0)+F(ω+ω0)]
- [[Pasted image 20250101161916.png]]
信号带宽:
- B = 2fmax
不过DSB并不常用,因为只用一边的边带其实就能传输信号的
单边带SSB调制
时域表达式:
- S s s b ( t ) = f ( t ) c o s ω 0 t ± f ^ ( t ) s i n ω 0 t S_{\mathrm{ssb}}\left(\,t\right)\,=f(\,t)\,\mathrm{cos}\omega_{0}t\,\pm\,\hat{f}(\,t)\,\mathrm{sin}\omega_{0}t Sssb(t)=f(t)cosω0t±f^(t)sinω0t
频域表达式:
- 取一半,所以复杂了,不列
信号带宽:
- B = fmax
调制和解调
- 调制的概念
- 解调:可以插入A0 后包络解调(DSB一样) 或者同步解调
残留边带VSB调制
带宽:
- fmax + fa (a和残留边带滤波器衰减有关)
调制:
- 就是DSB后面加一个残留边带滤波器
应用:
- 电视系统的图像传输
性能分析比较
DSB和SSB具有相同的输出信噪比,高于AM
DSB和SSB具有相同的抗噪性能强于AM
DSB和AM占用传输带宽为SSB的2倍
学会使用增益取计算输入和输出信噪比进而算功率~
角度调制
调制方法表达式和指标
调制信号的带宽
复用的概念
信源编码
哈夫曼编码的例题
解答形成树:
得到的结果码长一般大于信源熵应该
数字基带传输系统
看书
数字载波传输系统
看书
纠错编码
概念辨析:
- 循环码:循环码组中任一许用码字(全0码除外)循环左移(或右移)后所得的码字任为该循环码组中的一个许用码字
附: 一定要搞懂sic和Sa还有矩形窗对应的傅里叶变换对:
- 参考学习
- 记住频域的带宽B,幅度1 对应就是2Bsinc2Bt 乘上幅度(1)!!!!!!!(w转为f理解
- 无码间串扰的等效低通
- 时域上幅度为1,左右两边是二分之T的,频域上第一个零点为1/T(2pi/T,w为单位),最大值为T,结果是TSa(wT/2)(w为轴) (带宽一般都是以f为衡量,而且只看右边部分!!,因为是对称,负频也没意义)。 记住时域“时宽”为T撇撇,幅度为1,那么对应就是2T撇撇sinc(2T撇撇f)*幅度(1)
- 需要保留sinc或者Sa部分的完整再看幅值
- Sa(pix) = sinc(x)