Sa函数 与 sinc函数

【 1. Sa函数】

S a ( x ) = sin ⁡ ( x ) x Sa(x)=\frac{\sin(x)}{ x} Sa(x)=xsin(x)

  • 也称为 抽样函数
  • 傅里叶变换
    π [ u ( w + 1 ) − u ( w − 1 ) ] \pi [u(w+1)-u(w-1)] π[u(w+1)u(w1)]
  • 积分性质
    ∫ 0 ∞ S a ( t ) d t = π 2 \int_{0}^{\infty}Sa\left(t\right)dt=\dfrac{\pi}{2} 0Sa(t)dt=2π ∫ − ∞ + ∞ S a ( t ) d t = π \int_{-\infty}^{+\infty}S a\left(t\right)dt=\pi +Sa(t)dt=π
  • 是一个 偶函数 。

【 2. sinc函数 】

s i n c ( x ) = sin ⁡ ( π x ) π x sinc (x)=\frac{\sin(\pi x)}{\pi x} sinc(x)=πxsin(πx)

  • 也称为 辛格函数
  • 傅里叶变换
    u ( w + 1 π ) − u ( w − 1 π ) u(\frac{w+1}{\pi})-u(\frac{w-1}{\pi}) u(πw+1)u(πw1)
    在这里插入图片描述

【 3. 两者的关系 】

s i n c ( x ) = S a ( π x ) sinc(x)=Sa(\pi x) sinc(x)=Sa(πx)

【 4. 傅里叶变换分析 】

4.1 矩形窗的傅里叶变换

在这里插入图片描述
g τ ( t ) = r e c t ( t ) = { 1 , ∣ t ∣ < τ 2 0 , ∣ t ∣ > τ 2 g_\tau(t)=rect(t)=\begin{cases}1,&\mid t\mid<\dfrac\tau2\\[2ex]0,&\mid t\mid>\dfrac\tau2\end{cases} gτ(t)=rect(t)= 1,0,t∣<2τt∣>2τ
F ( j ω ) = ∫ − τ / 2 τ / 2 e − j ω t d t = e − j ω τ 2 − e j ω τ 2 − j ω = sin ⁡ ( ω τ 2 ) w 2 = τ S a ( ω τ 2 ) F(\text{j}\omega)=\int_{-\tau/2}^{\tau/2}\mathrm{e}^{-j\omega t}\mathrm{d}t=\frac{\mathrm{e}^{-j\omega\frac{\tau}{2}}-\mathrm{e}^{j\omega\frac{\tau}{2}}}{-j\omega}=\frac{\sin(\frac{\omega \tau}{2})}{\frac{w}{2}}=\tau Sa(\frac{\omega \tau}{2}) F(jω)=τ/2τ/2etdt=e2τe2τ=2wsin(2ωτ)=τSa(2ωτ)

4.2 Sa 函数的傅里叶变换

在这里插入图片描述
S a ( t ) = s i n t t Sa(t)=\frac{sint}{t} Sa(t)=tsint
F ( j ω ) = π [ u ( w + 1 ) − u ( w − 1 ) ] = { π ∣ ω ∣ < 1 0 ∣ ω ∣ > 1 F(\text{j}\omega)=\pi [u(w+1)-u(w-1)]=\begin{cases}{\pi}&{\left|\omega\right|<1}\\ {0}&{\left|\omega\right|>1}\end{cases} F(jω)=π[u(w+1)u(w1)]={π0ω<1ω>1

4.3 Sinc 函数的傅里叶变换

s i n c ( t ) = sin ⁡ ( π t ) π t sinc(t)=\frac{\sin(\pi t)}{\pi t} sinc(t)=πtsin(πt)
F ( j ω ) = u ( w + 1 π ) − u ( w − 1 π ) = { 1 ∣ ω ∣ < 1 0 ∣ ω ∣ > 1 F(\text{j}\omega)=u(\frac{w+1}{\pi})-u(\frac{w-1}{\pi})=\begin{cases}{1}&{\left|\omega\right|<1}\\ {0}&{\left|\omega\right|>1}\end{cases} F(jω)=u(πw+1)u(πw1)={10ω<1ω>1

4.4 Bsinc(Bt) 的傅里叶变换

  • 傅里叶变换的尺度变换性质: f ( a t ) ⇌ 1 ∣ a ∣ F ( j w a ) f(at)\xrightleftharpoons[]{} \frac{1}{|a|}F(j\frac{w}{a}) f(at) a1F(jaw)
    B s i n c ( B t ) = B sin ⁡ ( π B t ) π B t = sin ⁡ ( π B t ) π t Bsinc(Bt)=B \frac{\sin(\pi Bt)}{\pi Bt}=\frac{\sin(\pi Bt)}{\pi t} Bsinc(Bt)=BπBtsin(πBt)=πtsin(πBt)
    F ( j w ) = r e c t ( f B ) = { 1 ∣ f ∣ < B 2 0 ∣ f ∣ > B 2 F(jw)=\mathrm{rect}\Big(\frac{f}{B}\Big)=\begin{cases}{1}&{\left|f\right|<\frac{B}{2}}\\ {0}&{\left|f\right|>\frac{B}{2}}\end{cases} F(jw)=rect(Bf)={10f<2Bf>2B

4.5 B s i n c [ B ( t − τ m ) ] Bsinc[B(t-τ_m)] Bsinc[B(tτm)] 的傅里叶变换

  • 雷达回波基带信号脉压匹配滤波器的输出一般为 r p c ( t ^ , t m ) = B s i n c [ B ( t − τ m ) ] ⋅ e x p ( − j 2 π f 0 τ m ) r_{pc}(\widehat{t},t_m)=Bsinc[B(t-τ_m)]·exp(-j2\pi f_0 \tau _m) rpc(t ,tm)=Bsinc[B(tτm)]exp(j2πf0τm),故对其包络 B s i n c [ B ( t − τ m ) ] Bsinc[B(t-τ_m)] Bsinc[B(tτm)] 的傅里叶变换分析非常必要。
  • 傅里叶变换的时移性质: f ( t ± t 0 ) ⇌ e ± j w t 0 F ( j w ) f(t±t_0)\xrightleftharpoons[]{} e^{±jwt_0}F(jw) f(t±t0) e±jwt0F(jw)
    B s i n c [ B ( t − τ m ) ] Bsinc[B(t-τ_m)] Bsinc[B(tτm)]
    F ( j w ) = e − j w τ m r e c t ( f B ) F(jw)=e^{-jw\tau_m} \mathrm{rect}\Big(\frac{f}{B}\Big) F(jw)=ejwτmrect(Bf)
  • 20
    点赞
  • 95
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MR_Promethus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值