Leetcode 844. 比较含退格的字符串

Leetcode 844. 比较含退格的字符串

思路

用两个栈:将字符串入栈,若是#则将栈里的字符出栈,之后再比较栈内元素是否相等。

代码

    bool backspaceCompare(string S, string T) {
        stack<char> st1, st2;

        //将两个字符串入栈
        for(int i=0;i<S.length();i++){ 
            if(S[i]!='#') st1.push(S[i]); //字符入栈
            else{
                if(!st1.empty()) st1.pop();  //遇到#且栈不为空则出栈
                else continue;
            }
        }

        for(int j=0;j<T.length();j++){
            if(T[j]!='#') st2.push(T[j]);
            else{
                if(!st2.empty()) st2.pop();
                else continue;
            }
        }

        //比较两个栈里的元素,若相等则都出栈,若不等则跳出循环
        while(!st1.empty() && !st2.empty()){
            if(st1.top()==st2.top()){
                st1.pop();
                st2.pop();
            }
            else break;
        }

        //最后看两个栈是否都为空,若是则相等
        if(st1.empty() && st2.empty()) return true;
        else return false;
    }

总结

看解题里好像可以不用栈,直接用字符串就能解决

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值