Airnbn---分析每个城区名宿的分布及均价

listings.csv文件链接 https://pan.baidu.com/s/1WflMMb_tmsdLFOGA2LbKhQ  提取码:gmer 

import numpy as np         #数组操作
import pandas as pd        #数据结构操作
import seaborn as sns      #提供了一个高级界面来绘制有吸引力的统计图形
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')   #利用过滤器来实现忽略告警
data=pd.read_csv("listings.csv")    #读取本地数据
data.head()                         #默认取前5
print(data)
print(data.head())
data.info()                      #获取信息查看未缺失值个数及数据类型等信息
data.isnull().sum()              #统计缺失值个数
d=data[data["name"].isnull()]    #找出name空的值
print(d.T)                       #转置
data.drop(["neighbourhood_group"],axis=1,inplace=True)     #删除neighbourhood_group列  axis=1表示列
data['reviews_per_month'].fillna(data['reviews_per_month'].mean(),inplace=True)       #缺失值填充
data.isnull().sum()                             
print(data.describe())
Des=data.describe().T
print(Des)

data.head()     运行结果

#房源分布
data_area=data['neighbourhood'].value_counts(ascending=True)         #value_counts查看不同值并统计个数
plt.rcParams['font.sans-serif']=['SimHei']                          #显示中文字符
plt.figure(figsize=(25,10),frameon=True,facecolor="white")          #背景 边框    
plt.pie(data_area,labels=data_area.index,autopct="%.2f%%",shadow=False)#扇形图
plt.title("北京租房房源分布",fontsize=20)                               #设置表名
plt.axis('equal')     #x轴y轴相等               
plt.legend()          #右上角说明
print(data_area)

 data_area=data['neighbourhood'].value_counts(ascending=True)   统计各区分布情况

 根据所求数据作图分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值