listings.csv文件链接 https://pan.baidu.com/s/1WflMMb_tmsdLFOGA2LbKhQ 提取码:gmer
import numpy as np #数组操作
import pandas as pd #数据结构操作
import seaborn as sns #提供了一个高级界面来绘制有吸引力的统计图形
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore') #利用过滤器来实现忽略告警
data=pd.read_csv("listings.csv") #读取本地数据
data.head() #默认取前5
print(data)
print(data.head())
data.info() #获取信息查看未缺失值个数及数据类型等信息
data.isnull().sum() #统计缺失值个数
d=data[data["name"].isnull()] #找出name空的值
print(d.T) #转置
data.drop(["neighbourhood_group"],axis=1,inplace=True) #删除neighbourhood_group列 axis=1表示列
data['reviews_per_month'].fillna(data['reviews_per_month'].mean(),inplace=True) #缺失值填充
data.isnull().sum()
print(data.describe())
Des=data.describe().T
print(Des)
data.head() 运行结果
#房源分布
data_area=data['neighbourhood'].value_counts(ascending=True) #value_counts查看不同值并统计个数
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文字符
plt.figure(figsize=(25,10),frameon=True,facecolor="white") #背景 边框
plt.pie(data_area,labels=data_area.index,autopct="%.2f%%",shadow=False)#扇形图
plt.title("北京租房房源分布",fontsize=20) #设置表名
plt.axis('equal') #x轴y轴相等
plt.legend() #右上角说明
print(data_area)
data_area=data['neighbourhood'].value_counts(ascending=True) 统计各区分布情况
根据所求数据作图分析