各大数据组件数据倾斜的原因和解决办法

1 背景

在处理大规模数据时,数据倾斜是一个常见的问题。数据倾斜指的是在分布式环境中处理数据时,某些节点上的任务会比其他节点更加繁重,这可能导致性能下降、资源浪费等问题。数据倾斜可能会出现在不同层次的数据处理过程中,例如 map 阶段、reduce 阶段、join 操作等。

数据倾斜的背景可以从以下几个方面来解释:

  • 数据量分布不均
    在分布式环境中,数据量分布不均可能导致数据倾斜。通常情况下,每个节点应该处理相同数量的数据,但如果某个节点上的数据量过大或过小,则可能导致该节点上的任务更加繁重或者空闲。

  • 数据键分布不均
    如果一些数据键的出现频率非常高,那么与这些键相关的任务会比其他任务更加繁重,从而导致数据倾斜。例如,在 WordCount 任务中,某些单词可能会出现数百万次,而其他单词则只出现几次。如果不将数据键合理分配到不同的节点上,就可能会导致数据倾斜的问题。

  • 处理逻辑复杂
    如果数据的处理逻辑非常复杂,例如使用多个 join 操作或使用自定义函数等,那么可能会导致数据倾斜。这是因为复杂的处理过程会导致某些节点上的任务更加繁重,从而影响整个任务的性能。

  • 网络带宽和计算资源不均
    在分布式环境中,如果不同节点之间的网络带宽和计算资源不均衡,可能会导致数据倾斜。例如,如果某个节点的网络带宽非常低或者计算资源非常有限,则该节点上的任务可能无法及时完成,从而影响整个任务的性能。

总之,数据倾斜是一个常见问题,可能出现在大规模数据处理的不同阶段。了解数据倾斜的背景,可以帮助我们更好地避免和解决数据倾斜的问题,提高分布式处理任务的性能和可靠性。

2 Hive

  • 数据分桶
    使用数据分桶可以将数据均匀地分布到不同的桶中,从而避免数据倾斜。在创建表时,您可以使用 CLUSTERED BY 子句指定分桶列,并使用 NUM_BUCKETS 子句指定桶的数量。例如:
CREATE TABLE mytable (
  id INT,
  name STRING,
  value DOUBLE
)
CLUSTERED BY (id) INTO 10 BUCKETS;

这将把 mytable 表按照 id 列的值分成 10 个桶。在查询时,您可以使用桶列分发器来确保 Hive 将查询分发到所有桶中。例如:

SET hive.optimize.bucketmapjoin = true;
SET hive.optimize.bucketmapjoin.sortedmerge = true;

SELECT /*+ MAPJOIN(t1) */ *
FROM mytable t1 JOIN mytable t2 ON t1.id = t2.id;
  • 数据采样
    使用数据采样可以帮助您了解数据的分布情况,从而发现数据倾斜问题。在 Hive 中,您可以使用 TABLESAMPLE 子句对数据进行采样。例如:
SELECT *
FROM mytable TABLESAMPLE(10 PERCENT);

这将随机选择 mytable 表中的 10% 的数据进行查询。通过观察采样结果,您可以了解数据的分布情况,并确定哪些列或键可能会导致数据倾斜。

  • 动态分区
    对于使用静态分区的表,如果某些分区中的数据量非常大,则可能会导致数据倾斜。在这种情况下,您可以考虑使用动态分区。动态分区将在运行时根据查询结果自动创建分区,并将数据均匀地分布到不同的分区中。例如:
SET hive.exec.dynamic.partition.mode = nonstrict;

INSERT INTO newtable PARTITION(year, month)
SELECT * FROM oldtable;

这将从 oldtable 表中读取数据,并将其插入到新表 newtable 中的不同分区中,每个分区由 year 和 month 列确定。

  • 压缩
    在 Hive 中,压缩可以帮助减小数据倾斜问题。通过压缩数据,可以减少磁盘 I/O 和网络传输量,提高查询性能和执行时间。在创建表时,您可以使用 COMPRESSION 子句指定压缩算法。例如:
CREATE TABLE mytable (
  id INT,
  name STRING,
  value DOUBLE
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS ORC
TBLPROPERTIES ("orc.compress"="SNAPPY");

这将创建一个 ORC 格式的表,并使用 SNAPPY 压缩算法对数据进行压缩。

3 Hbase

解决方案:预分区、加盐、哈希、反转。

  • 预分区:预分区的目的让表的数据可以均衡的分散在集群中,而不是默认只有一个Region分布在集群的 一个节点上。
  • 加盐:这里所说的加盐不是密码学中的加盐,而是在Rowkey的前面增加随机数,具体就是给Rowkey分配 一个随机前缀,从而使得它和之前的Rowkey的开头不同。
  • 哈希:哈希会使同一行永远用一个前缀加盐,也可以使负载分散到整个集群,但是读却是可以预测的,使 用确定的哈希可以让客户端重构完整的Rowkey,可以使用get操作准确获取某一个行数据。
  • 反转:反转固定长度或者数字格式的Rowkey,这样可以使得Rowkey中经常改变的部分(最没有意义的部 分)放在前面,这样可以有效的随机Rowkey,但是牺牲了Rowkey的有序性。

4 Spark

  • Spark中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同导致的不同task所处理的数据量不同的问题。

  • 例如,reduce点一共要处理100万条数据,第一个和第二个task分别被分配到了1万条数据,计算5分钟内完成,第三个task分配到了98万数据,此时第三个task可能需要10个小时完成,这使得整个Spark作业需要10个小时才能运行完成,这就是数据倾斜所带来的后果。

  • 解决方案一:使用Hive ETL预处理数据

    • 适用场景:导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。

    • 方案实现思路:此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。

    • 方案实现原理:这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。

    • 方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。

    • 方案缺点:治标不治本,Hive ETL中还是会发生数据倾斜。

    • 方案实践经验:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。

    • 项目实践经验:在美团·点评的交互式用户行为分析系统中使用了这种方案,该系统主要是允许用户通过Java Web系统提交数据分析统计任务,后端通过Java提交Spark作业进行数据分析统计。要求Spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些Spark作业的shuffle操作提前到了Hive ETL中,从而让Spark直接使用预处理的Hive中间表,尽可能地减少Spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升了6倍以上。

  • 解决方案二:过滤少数导致倾斜的key

    • 适用场景:如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

    • 方案实现思路:如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。

    • 方案实现原理:将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。

    • 方案优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。

    • 方案缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。

    • 方案实践经验:在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。

  • 解决方案三:提高shuffle操作的并行度

    • 方案适用场景:如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案。

    • 方案实现思路:在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小。

    • 方案实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。

    • 方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。

    • 方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。

    • 方案实践经验:该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。

  • 解决方案四:两阶段聚合(局部聚合+全局聚合)

    • 方案适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

    • 方案实现思路:这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1)(1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

    • 方案实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。

    • 方案优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。

    • 方案缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。

  • 解决方案五:将reduce join转为map join

    • 方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

    • 方案实现思路:不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。

    • 方案实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。。

    • 方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。

    • 方案缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。

  • 解决方案六:采样倾斜key并分拆join操作

    • 方案适用场景:两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。

    • 方案实现思路:对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。而另外两个普通的RDD就照常join即可。最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。

    • 方案实现原理:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。

    • 方案优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。

    • 方案缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。

  • 解决方案七:使用随机前缀和扩容RDD进行join

    • 方案适用场景:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。

    • 方案实现思路:该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。然后将该RDD的每条数据都打上一个n以内的随机前缀。同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。最后将两个处理后的RDD进行join即可。

    • 方案实现原理:将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。

    • 方案优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。

    • 方案缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。

    • 方案实践经验:曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。

  • 解决方案八:多种方案组合使用

    在实践中发现,很多情况下,如果只是处理较为简单的数据倾斜场景,那么使用上述方案中的某一种基本就可以解决。但是如果要处理一个较为复杂的数据倾斜场景,那么可能需要将多种方案组合起来使用。比如说,我们针对出现了多个数据倾斜环节的Spark作业,可以先运用解决方案一和二,预处理一部分数据,并过滤一部分数据来缓解;其次可以对某些shuffle操作提升并行度,优化其性能;最后还可以针对不同的聚合或join操作,选择一种方案来优化其性能。大家需要对这些方案的思路和原理都透彻理解之后,在实践中根据各种不同的情况,灵活运用多种方案,来解决自己的数据倾斜问题。

5 Flink

  • 产生数据倾斜的原因主要有2个方面

    • 业务上有严重的数据热点,比如如祺出行的车辆轨迹数据中,广州天河区、深圳南山区等几个一线城市的热点区域远远超过其他区域。
    • 技术上如果大量使用了KeyBy、GroupBy等操作,且没有对分组的Key做特殊的处理,会产生数据热点问题。
  • 解决问题的思路

    • 业务上要尽量避免热点 key 的设计,例如我们可以把上海、北京等热点城市与非热点城市划分成不同的区域,并进行单独处理;

    • 技术上出现热点时,要调整方案打散原来的 key,避免直接聚合;此外还可以利用Flink提供的功能来避免数据倾斜。

  • Flink 任务数据倾斜场景和解决方案

    • (1)两阶段聚合解决 KeyBy 热点

      • a. 将需要分组的 key 打散,例如添加随机的后缀;
      • b. 对打散后的数据进行聚合;
      • c. 将被打散的 key 还原为原始的 key;
      • d. 二次 KeyBy 来统计最终结果并输出给下游。
    • (2)GroupBy + Aggregation 分组聚合热点问题

      • 如果是采用FlinkSQL的方式,则可以将FlinkSQL 嵌套成两层,里层通过随机打散若干份(如100)的方式降低数据热点,(这个打散的方式可以根据业务灵活指定)。
    • (3)Flink 消费 Kafka 使用并行度与Kafka分区数不一致导致的数据倾斜

      • Flink 消费 Kafka 的数据时,是推荐消费并行度为Kafka分区数的1倍或者整数倍的 ,即 Flink Consumer 的并行度 = Kafka 的分区数 * n (n = 1, 2 ,3 …)。
  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值