题目大意
给定一些分子,给定这些分子的四个方向(上下左右)的样式,只有相同样式的对应接口才能结合,问你用这些分子是否可以构成一个无穷大的结构体。
解法
实际上这道题就是找是否有环就可以了,如果有环,那么就一定可以无限延续下去。所以我们先建立A+~Z-这些点,然后我们建立每个分子的每条边所对应的点到另一条不同的边的对立的点的边。举个例子:
00B+D+A-
这个分子,我们要建一下的边:
B+ -> D-
B+ -> A+
D+ -> B-
D+ -> A+
A- -> B-
A- -> D-
然后就是个topo找环了。
附上AC代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int MAXM = 160500;
const int MAXN = 50000;
class Edge
{
public:
int to;
int next;
};
Edge es[MAXM];
int head[MAXN];
int ent[MAXN];
int N, n;
char str[10];
int et = -1;
void addEdge(int u, int v)
{
et++;
es[et].to = v;
es[et].next = head[u];
head[u] = et;
}
void readin()
{
memset(head, -1, sizeof(head));
scanf("%d", &n);
N = n+30;
int tmp;
for (int i = 1; i <= n; i++) {
scanf("%s", str);
if (str[1] == '+') {
tmp = str[0]-'A'+1;
addEdge(i, tmp+n);
ent[tmp+n]++;
} else if (str[1] == '-') {
tmp = str[0]-'A'+1;
addEdge(tmp+n, i);
ent[i]++;
}
if (str[3] == '+') {
tmp = str[2]-'A'+1;
addEdge(i, tmp+n);
ent[tmp+n]++;
} else if (str[3] == '-') {
tmp = str[2]-'A'+1;
addEdge(tmp+n, i);
ent[i]++;
}
if (str[5] == '+') {
tmp = str[4]-'A'+1;
addEdge(i, tmp+n);
ent[tmp+n]++;
} else if (str[5] == '-') {
tmp = str[4]-'A'+1;
addEdge(tmp+n, i);
ent[i]++;
}
if (str[7] == '+') {
tmp = str[6]-'A'+1;
addEdge(i, tmp+n);
ent[tmp+n]++;
} else if (str[7] == '-') {
tmp = str[6]-'A'+1;
addEdge(tmp+n, i);
ent[i]++;
}
}
}
void work()
{
queue<int> ser;
for (int i = 1; i <= N; i++) {
if (!ent[i])
ser.push(i);
}
int root;
while(!ser.empty()) {
root = ser.front();
ser.pop();
for (int i = head[root]; i != -1; i = es[i].next) {
ent[es[i].to]--;
if (!ent[es[i].to])
ser.push(es[i].to);
}
}
for (int i = 1; i <= N; i++)
if (ent[i]) {
printf("unbounded");
return;
}
printf("bounded");
}
int main()
{
readin();
work();
return 0;
}