新竹清华大学:并行计算与并行编程课程_课程笔记

这门课程涵盖了并行计算的基础,包括并行与分布式计算的区别,重点讲解了MPI和OpenMP的并行编程,以及CUDA GPU编程模型。课程还深入探讨了Hadoop和Spark在分布式计算框架中的应用,适合对高性能计算感兴趣的学员。
摘要由CSDN通过智能技术生成

课程目录

教學進度(Syllabus)

多线程编程中,大概分为Pthread和OpenMP&MPI编程。前者是全部由自己定义,包括想要哪个线程跑什么程序,后者较为自动化。

CUDA:GPU Programming
Hadoop:不仅仅是一个语言,本身已经是一个系统,或是Framework。好处是有自己提供的API等等,可以快速的完成写程式,还可以自己管理等等。现在比较流行这种。例如AI常用的Framework是Tensorflow。

最好写report:执行时间都花在哪里,计算?储存?不同动作的时间多少?

Part I: Parallel Programming

Introduction to Parallel Computers & Computing

  1. Parallel Computing Introduction
    并行计算:用多个Processors(Core)解决一个问题。
    一个Problem会拆分成若干个Instruction,送入Processor中执行。
     
    并行计算 VS 分布式计算
     Parallel:强调同一个问题中同步的计算,以增加效能
     Distributed:不同的使用者之间资源的分享/共享(云计算)
     

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值