数据来源:数据来源:和鲸社区-Numpy+Pandas数据处理·第五关–wind.csv
主要内容:
- 数据读取时的参数设置-parse_dates
- 数据类型查看
- 自定义函数修复数据
- 将日期设置为索引
- 统计每列的缺失值和非缺失值
- 创建数据框,计算最大值,最小值,均值,标准差
- 以年为频率进行重采样
导入数据
import pandas as pd
import datetime
filepath6 = "/home/mw/input/Pandas_exercise2020/wind.csv"
wind = pd.read_csv(filepath6, sep='\s+')
wind.head()
添加参数 parse_dates
filepath6 = "/home/mw/input/Pandas_exercise2020/wind.csv"
wind = pd.read_csv(filepath6, sep='\s+', parse_dates=[[0,1,2]])
# parse_dates 表示将某一列设置为 时间类型
wind.head()
查看数据类型
wind