自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Castlehe的博客

平平凡凡打工人(快乐的码农)

  • 博客(374)
  • 资源 (10)
  • 收藏
  • 关注

原创 学习Opencv(蝴蝶书/C++)——5.矩阵的其他算子(友元函数)

这一章如果干学的话会很枯燥,看后面的具体算法,用到了再来看会比较好,🤪🤪🤪。

2024-02-25 22:23:50 1024

原创 大模型实战营第二期——4. XTuner 大模型单卡低成本微调实战

一般通过海量数据训练来的就是一个大的预训练模型/基座模型,如果不进行额外训练/微调,则询问什么是肺癌?,则模型不会意识到这是个需要回答的问题,只会去找训练集中拟合分布的对应结果,类似词嵌入会找最相近的词语。因此需要进行指令微调,让大模型理解指令的意图,才会给我们想要的答案。

2024-02-25 16:23:29 718

原创 大模型实战营第二期——3. 基于 InternLM 和 LangChain 搭建你的知识库

完成 LangChain 的自定义 LLM 子类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。demo所使用的数据考虑到版权等问题,选择由上海人工智能实验室开源的一系列大模型工具开源仓库作为语料库来源,包括:opencompass,lmdeploy,xtuner等。开源词向量模型 ,也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,也可以自由尝试别的开源词向量模型。另外,用到的词向量模型是。

2024-02-10 23:47:46 1147

原创 大模型实战营第二期——2. 浦语大模型趣味Demo

大模型:参数规模大的模型,这个大的量级指的是:十亿甚至千亿以上的参数。

2024-02-08 21:32:27 732

原创 学习Opencv(蝴蝶书/C++)——4.图形和大型数组类型(下)

如果要表示的数据中,含有大量的0元素(非0元素很少),则可以用系数矩阵来表示。比如:直方图或者高维数组中,经常会出现大量的0元素稀疏表示只存储有数据的部分,可以节约大量的内存,在实际应用中,很多稀疏矩阵如果用稠密的方式去表示,则占据的内存会特别巨大。稀疏表示的缺点是:计算会更慢(以每个元素的计算为基准来比较的话)。但是并不是绝对意义上的慢,因为稀疏表示提前避免了很多不需要的操作。稀疏表示和稠密表示cv::Mat支持的函数基本一致但是二者的数据存储/数据组织方式非常不同,cv::Mat。

2024-01-23 22:24:08 1150

原创 大模型实战营第二期——1. 书生·浦语大模型全链路开源开放体系

B站-书生·浦语大模型全链路开源体系数据:汇聚 5400+ 数据集,涵盖多种模态与任务,更多数据集预训练:并行训练,极致优化,速度达到 3600 tokens/sec/gpu微调:全面的微调能力,支持SFT,RLHF和通用工具调用部署:全链路部署,性能领先,每秒生成 2000+ tokens评测:全方位评测,性能可复现,50 套评测集,30 万道题目。

2024-01-03 22:08:53 1038 1

原创 macOS报错——Error: The maximum number of open files on this system has been reached

【代码】macOS报错——Error: The maximum number of open files on this system has been reached。

2023-12-12 23:03:01 82

原创 学习Opencv(蝴蝶书/C++)相关1——4.图形和大型数组类型

之前在学习Opencv(蝴蝶书/C++)——4.图形和大型数组类型的4.2.3 NAryMatIterator迭代器构造函数中详细说过了。普通的迭代器,比如:MatIterator_,是迭代Mat中元素的迭代器(返回Mat中的单个元素),迭代的对象是矩阵里的元素而NAryMatIterator是不同的Mat矩阵的迭代器(返回这些数组的块/plane进行迭代),迭代的对象是矩阵虽然网上搜到的相关内容很少,但是在OpenCV的源码中,其实大量用到了这种迭代器。例如,直接搜索可得OpenCV中,和。

2023-12-07 21:58:40 140

原创 学习Opencv(蝴蝶书/C++)——4.图形和大型数组类型(上)

其实按照条例梳理一下,看起来有构造函数一共29个,实际上分类是很清晰的。除和,剩下27个的分类如下之所以会有这么多类型的构造函数,是因为其是C++和C数据类型混用的表达式,即便当前有的数据是一个指向C结构的指针,只要与C++定义的结构一致,那么函数也可以正确处理这个C结构的变量。

2023-12-01 13:19:56 333

原创 学习Opencv(蝴蝶书/C++)相关——3. OpenCV的数据类型

根据Eigen也是一个跨平台,API接口优雅,文档完整,根据不同平台的指令系统进行了优化,比OpenCV的Mat类更加灵活,且可以和OpenCV的Mat类兼容的库。

2023-11-27 17:37:11 92

原创 学习Opencv(蝴蝶书/C++)——3. OpenCV的数据类型

看起来OpenCV的数据类型很多,其实主要的就是那几个,剩下的都是从那几个演化的。按功能和用途去区分归类,看起来就很清晰了。主要文档主要涉及到的代码文件。

2023-11-22 21:38:33 1482

原创 学习Opencv(蝴蝶书/C++)代码——2.OpenCV初探

另外,很奇怪的一个现象,使用VideoWriter写入的视频,直接用系统自带的视频播放器可以打开,但是用VideoCapture打开后,该视频从8.8MB变成48字节。表明生成的视频文件不完整,建议在使用视频之前,先对VideoWriter类的对象进行释放。确保焦点在显示的窗口上,然后按下想知道键值的键,回到命令行查看输出的键值即可。如果不记得了,需要查看自己当前用的编译的OpenCV是否支持QT(默认。可以看到,GUI部分的信息只有Cocoa(MacOS系统支持的窗口),会保留高字节的值。

2023-11-20 18:29:34 275

原创 C++——gcc、clang和cmake以及make

CMakeLists.txt在linux环境下,就是指导如何去生成makefile的,所以会有很多值是类似的,比如:CMakeLists.txt中指定的project名字,执行时使用的cpp文件等,都会体现在生成的makefile文件中。make仅限于linux或者macOS这类型的平台,不过Windows上也有类似于make的工具,叫nmake。Cmake和make就是linux或者macOS下构建过程中所使用的两个阶段的不同工具。),这里的makefile脚本所使用的指令(规则)有所不同。

2023-11-13 22:56:55 390

转载 C++——linux下使用gcc或者cmake进行c++程序开发

GDB是一个用来调试C/C++程序的功能强大的调试器,是Linux系统开发 C/C++最常用的调试器程序员可以使用GDB来跟踪程序中的错误,从而减少程序员的工作量。Linux 开发C/C++ 一定要熟悉 GDB,VSCode是通过调用GDB调试器来实现C/C++的调试工作的;Windows 系统中,常见的集成开发环境(IDE),如 VS、VC等,它们内部已经嵌套了相应的调试器。设置断点(断点可以是条件表达式)使程序在指定的代码行上暂停执行,便于观察单步执行程序,便于调试。

2023-11-10 13:31:07 122

原创 学习OpenCV(蝴蝶书/C++)相关——2.MacOS下使用VSCode调试cpp程序

之前在用过简单的的配置。但是不足以支撑我这里调用OpenCV这些第三方库的调试,因此认真看了一下。

2023-11-09 11:44:11 568

原创 学习Opencv(蝴蝶书/C++)相关——2.用clang++或g++命令行编译程序

就是讲在不使用Visual Studio这种IDE的情况下,纯靠g++/gcc这样的命令行去逐步执行cpp程序的编译,链接,执行等操作。

2023-11-06 23:30:44 984

原创 学习Opencv(蝴蝶书/C++)相关——1. 前言 和 第1章.概述

不过现在都是4.x了,因此重新整理了一下,整体上差不多,重要的还是那几个。完整的Modules其实还有很多,但是很多不常用,因此并不做更多的说明。对于Opencv3.x版本,网上最常见的图,图自。以及python的,来自。

2023-11-04 17:36:23 663

原创 学习Opencv(蝴蝶书/C++)代码——1.macOS下安装OpenCV4.8.0和QT5.15(C++)

cmake过程中会出现很多提示信息,比如关于库和安装的信息,也许以后会用得到,这里记录一下:(类似的日志可以在build_opecv/version_string.tmp 、build_opecv/CMakeVars.txt 中看到)macOS是苹果对Mac系列的电脑的操作系统,是基于Darwin内核的UNIX平台,类似于其他的类UNIX系统。本机之前安装了OPENEXR这个库,导致opencv直接用了这个brew安装的openexr,但是这个openexr并不包括zlib的依赖,因此显示。

2023-11-03 19:18:02 1092

原创 学习Opencv(蝴蝶书/C++)——1. 前言 和 第1章.概述

opencv的全名:Open Source Computer Vision Library (OpenCV)是Intel公司的,主要是Intel公司里的一个俄罗斯软件团队开发的,项目的主要负责人:2001年之后开始为人熟知和使用,1999年1月发布alpha版本Opencv库有500多个函数,涵盖工业检测,医学成像,摄像机标定,立体视觉和机器人等。卫星地图和电子地图的拼接;医学图像去噪;物体分析,安全和入侵检测,自动监视和安全系统(现在都用深度学习了)摄像机标定等。

2023-11-02 10:44:33 1953 3

原创 使用Github.io创建自己的博客

导致这个空格出现的原因是,在添加知乎和csdn的链接后,在VScode中进行了保存,保存时默认对html文件进行了格式化,自动添加了这个空格。如果是直接fork了原项目,那么这个项目是无法修改可见性为私密的。主要就是name,baseurl和description个人描述等的修改,这里就不赘述了。基本了解文件结构之后,想要再改什么,就直接参考下面这两个成品改就可以了。可知,一般5~10分钟就发布好了,但是实际上,查看。720的png图像,因此自己的图像也尽量是720。中,后者当做备份,然后对前者进行修改。

2023-10-23 21:36:42 6844 9

原创 OpenMMLab【超级视客营】——支持InverseForm Loss(MMSegmentation的第三个PR)

直接用vscode登录,打开文件夹,或者用MobaXTerm等你习惯的终端连接软件去ssh连接,输入密码就行(默认用户名已经@在了ssh命令中,你只需要输入你上面创建的密码的值即可)2021年论文刚发布的时候很多issue是回复了,后面的就没有什么回复了。这次写注释的时候,唯一的一个异常,就是某行超过72个字符的时候,把。,微信扫码登录,在微信的页面里填写邮件里给的用户和密码。提交PR在测试的时候,第一次遇到构建文档报错。配置好之后,复制下面给的ssh命令,该有的基本都有,还算比较全,

2023-10-04 23:20:09 408

原创 OpenMMLab【超级视客营】——把类别信息加入可视化结果中(MMSegmentation的第二个PR)

第一次提交PR的时候没有看到这些帮助文档,其实很多同类型的PR,比如:支持新的数据集,支持单元测试等,是有一些现成的范例了,这里对怎么提交PR,代码格式那些的都有很好的指引。这个任务一开始属于MMSIG,后来又变成超级视课营了,就很曲折。但是没法获取ax的image,把带有annotate的imshow结果作为image进行传递。反正mmcv和torch强相关,最好不要走wheel去安装,直接编译吧,这个mmcv经常出问题。可以看看之前可视化相关的PR会进行哪些改动,就知道从哪里开始下手,修改代码了。

2023-08-03 09:00:45 470

原创 matplotlib——3. 绘制分布(scatter+hist)

左图是matplotlib的结果,右图是seaborn的结果。

2023-07-29 15:52:08 476

原创 OpenMMLab——BDD100K数据集(MMSegmentation的第一个PR)

包含一些可视化和评估的脚本数据集官方介绍博客:伯克利发布BDD100K:目前最大规模开放驾驶视频数据集基于BDD100K的竞赛:报错代码是抛出的。简单来说,就是要把你要添加的模块加到系统路径里,要在pspnet.py中引入bdd100k.py添加的系统路径应该是import sys。

2023-07-14 14:31:37 1877 11

原创 OpenMMLab-AI实战营第二期——相关3. RGB语义分割标注图像转为Gray格式的mask

除了红色和黑色,显示为白色和黄色的其实就是刚刚出现频率比较低的那三种颜色值,可以看出来,是花的边缘(与背景挨着的地方)。常规的软件打开这种灰度图是什么都看不见的,即便是matplotlib这种程序读图,如果不设置合适的cmap,也看不到东西。:大致可以看到,给出的原始标记图像是RGB格式的,三通道。将原图转为灰度图,构建映射词典,查看灰度图的语义mask。可以看到,上面是77和78,下面是76和78。,其他3种颜色其实是边缘,这在之后可以看到。在opencv3.0中,对同一图像处理,结果不同。

2023-06-29 17:13:35 444

原创 matplotlib——2. 形状和路径(Shape and Collection)底纹(hatch)

【代码】matplotlib——2. 形状和路径(Shape and Collection)底纹(hatch)

2023-06-27 16:02:54 524

原创 OpenMMLab-AI实战营第二期——相关1. COCO数据集格式和pycocotools使用(目标检测方向)

图像分割上下文识别超像素分割33w图像,其中有标记的超过20w150w目标实例,标注的不错,下图左上角的那些标签是可以点击的,会和下面的图像有交互效果。91个物体类别:除了上面那确定对象的80个类别,还有天空、海洋等一些别的,不是目标检测类别,是全景分割等需要的内容。每张图像5个情景描述,如上图有25w人的关键点标注其实就是个对json格式进行解析的库,就三个.py脚本,不要和protobuf这个库搞混了,名字有一丢丢像(我之前以为这个库很难,就是和这个搞混了)

2023-06-22 22:32:43 1372

原创 OpenMMLab-AI实战营第二期——5-2. MMSegmentation代码课

视频链接:

2023-06-18 19:37:50 468

原创 OpenMMLab-AI实战营第二期——6-2.玩转AIGC神器MMagic

Stable Diffusion的文生图,以及controlnet和dreamboost的图生图(输入一个图像+文字描述,输出另一张图像)在2022年以前,这种技术是无法想象的,像magic一样,所以这个库就叫mmagic1. Stable Diffusion和Midjourney参考知乎文章-十分钟读懂Stable Diffusion,这里也有体验Midjourney的方式,但是我体验的时候提示今日免费体验额度没有了。

2023-06-16 22:39:44 797 1

原创 OpenMMLab-AI实战营第二期——6-1. 底层视觉与MMEditing

GAN(generateive adversarial network)是一种无监督的网络,在超分任务上有广泛的应用。

2023-06-15 22:59:43 556

原创 OpenMMLab-AI实战营第二期——5-1.语义分割与MMSegmentation

Transformer系列统一语义分割、实例分割和全景分割任务,大一统模型以上几种比较前沿的新算法,MMSegmentation里都有实现LabelStudio和LabelMe都集成了SAM,可以试试标注效果。

2023-06-12 23:14:38 1870

原创 OpenMMLab-AI实战营第二期——4-2.MMDetection代码课

MMDetection 支持了各种不同的检测任务,包括目标检测,实例分割,全景分割,以及半监督目标检测。检测是分割的基础,所以它也包含了很多分割任务,和MMSegmentation的区别是:目前,支持的分割任务为语义分割中支持了实例分割和全景分割。超详细!带你轻松掌握 MMSegmentation 整体构建流程语义分割的应用:①自动驾驶;②遥感图像分析;③医学图像分析。所以可以理解为专门为了这三个垂直方向把语义分割方向的模型单独列出来了这个库主要是面向3D的,感觉重点在点云数据上,

2023-06-11 22:09:30 1181 6

原创 OpenMMLab-AI实战营第二期——4-1.目标检测与MMDetection

定位+分类DPM:Deformable Part Model,可形变组件模型,于2008年提出,并发表了一系列的cvpr,NIPS。并且还拿下了2010年,PASCAL VOC的“终身成就奖”DPM用到了HOG的东西,是用传统算法做的。详见:CSDN博客-DPM(Deformable Part Model)原理详解博客园博客-关于DPM(Deformable Part Model)算法中模型可视化的解释,算法提出者使用的是matlab写得源码。

2023-06-10 00:31:39 1625

原创 OpenMMLab-AI实战营第二期——3-2. MMPretrain代码实战

比如:数据已经传到google云上了,懒得再改或者之后可能会修改数据分布,可能会有新的数据进来等那么频繁对图像文件夹进行改动,就不是很方便,此时可以考虑添加一个标注文件。准备数据集-标注文件方式1.文件结构| --fruit30_train | --哈密瓜 | --1.jpg | --2.jpg | --苦瓜 | --1.jpg | --2.jpg | --meta # 存放标注文件 | --train.txt | --val.txt | --test.txt2.标注文件内容比如:文件的内容。

2023-06-08 15:46:07 889 4

原创 vim实用功能汇总

默认vi打开所有文件都是没有颜色区分的,只有一种颜色,可以。上面是临时的方式,如果想要永久开启的话,需要。开启语法高亮,关闭的话就是。

2023-06-07 18:19:13 1715

原创 OpenMMLab-AI实战营第二期——3-1.深度学习预训练与MMPretrain

视频链接:b站-深度学习预训练与MMPretrain官网:self-attention对比学习掩码学习对比学习+掩码学习双流网络,zero-shot分类器

2023-06-05 22:50:46 593

原创 OpenMMLab-AI实战营第二期——2-2.基于RTMPose的耳朵穴位关键点检测(Colab+MMPose)

环境太新,导致后面安装mmcv的时候找不到现成的wheel,需要从tar.gz编译,编译一直过不去,mmcv一直卡在:Building wheels for collected packages: mmcv。总之把你希望要保留的文件都建立相应的文件夹,然后第一次打开.ipynb的时候,记得选择Colab,此时,这个文件就和Google云端硬盘关联了,在colab中对这个文件进行修改,会保存到Google云端硬盘中。注意,先选好运行时,再进行文件的关联,不然去新的运行时之后,还要再重来一遍。

2023-06-04 16:03:50 1008 1

原创 OpenMMLab-AI实战营第二期——2-1.人体关键点检测与MMPose

关键点提取,属于模式识别人体姿态估计的下游任务:行为识别(比如:拥抱。。下游任务:CG和动画,这个是最常见的应用下游任务:人机交互(手势识别,依据收拾做出不同的响应,比如:HoloLens会对五指手势(3D)做出不同的反应)自顶向下方法自底向上方法单阶段方法基于Transformer的方法。

2023-06-02 21:46:31 1429 4

原创 OpenMMLab-AI实战营第二期——1. 计算机视觉与OpenMMLab概述

个人更关注语义分割和3D方面的内容,所以这里重点记录这两点相关的。

2023-06-01 13:21:54 816

原创 matplotlib——1. 常用功能汇总

Responsive” 通常翻译为 “响应式的” 或者 “自适应的”。在计算机编程中, “响应式” 或 “自适应” 通常指程序可以根据不同设备屏幕大小或用户界面的变化自动进行调整,并且能够通过对用户输入和交互方式做出合理的回应。例如,网页设计中经常用到响应式布局,以使得页面在不同尺寸的屏幕上都能够展示得很好。如果涉及到多种操作系统,比如macOS和Windows,可能要关注一下这个参数。matplotlib已经支持的内建的backend有以下,详见。无论使用的是什么交互模式,都可以使用。

2023-05-30 17:55:44 1046

一种新的基于多模板快速推进算法和最速下降法的射线追踪方法

基于FMM的

2022-12-10

ocr中数字识别可能用到的一些字体

包括: 1. semi打印喷码字体 2. 常见程序界面字体 3. LED七段数码管字体 4. 点阵字体等

2022-03-02

KB3004394 win8-x86(紧急的受信任的根更新 Windows Windows 中的根证书程序的支持)

来自文章:visual studio卡在正在下载/正在验证进度条(不进行安装)中的资源

2022-02-11

KB3004394 win8.1-x64(紧急的受信任的根更新 Windows Windows 中的根证书程序的支持)

来自文章:visual studio卡在正在下载/正在验证进度条(不进行安装)中的资源

2022-02-11

KB3004394 win8-x86(紧急的受信任的根更新 Windows Windows 中的根证书程序的支持)

来自文章:visual studio卡在正在下载/正在验证进度条(不进行安装)中的资源

2022-02-11

KB3004394 win8 x64(紧急的受信任的根更新 Windows Windows 中的根证书程序的支持)

来自文章:visual studio卡在正在下载/正在验证进度条(不进行安装)中的资源

2022-02-11

KB3004394 win7-x86(紧急的受信任的根更新 Windows Windows 中的根证书程序的支持)

来自文章:visual studio卡在正在下载/正在验证进度条(不进行安装)中的资源

2022-02-11

KB3004394 win7-x64(紧急的受信任的根更新 Windows Windows 中的根证书程序的支持)

来自文章:visual studio卡在正在下载/正在验证进度条(不进行安装)中的资源

2022-02-11

cudnn-11.0-windows-x64-v8.0.5.39

cudnn-11.0-windows-x64-v8.0.5.39

2021-01-11

图像的增强

多媒体,图像增强,膨胀,腐蚀,形态学,开,闭操作。

2017-10-24

多媒体信息处理基础

多媒体,课件,第一章,基础,信息处理,图像处理,研究生

2017-10-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除