题意
Keshi有 nnn 个朋友,第 iii 个朋友有 iii 美元。如果邀请第 iii 个朋友做客,必须满足宴会上最多有 aia_iai 个人比他富有,最多 bib_ibi 个人比他贫穷。
问,Keshi最多可以邀请几个朋友?
分析
首先,如果可以邀请 kkk 个朋友,p1,p2,…,pk−1,pkp_1,p_2,…,p_{k-1},p_kp1,p2,…,pk−1,pk, 那么,必然可以邀请 k−1k-1k−1 个朋友,p1,p2,…,pk−1p_1,p_2,…,p_{k-1}p1,p2,…,pk−1,邀请人数满足单调性,可以选择二分答案。
那么对于 kkk,如何判断是否满足条件,即可以邀请到 kkk 个朋友?
首先,我们注意到一个人拥有的金钱是逐渐递增的,也就是说,如果第 iii 个人是第 xxx 个被邀请的,那么比他贫穷的人必然有 x−1x-1x−1 个,比他富有的人必然有 k−xk-xk−x 个。
我们从第1个人开始邀请,邀请到第 i−1i-1i−1个人总共邀请了 x−1x-1x−1个朋友,这 x−1x-1x−1 个朋友序号都比当前这个人 iii 要小,所以钱数也是比他少的,故而,比他贫穷的人有 x−1x-1x−1 个是可以确定的;
剩下的 k−xk-xk−x 个人,都是从第 i+1i+1i+1 位朋友后开始邀请的,钱数都比第 iii 个朋友多,所以,后面不论邀请谁,比他富有的人必然有 k−xk-xk−x 个。
所以,第 iii 个人可以被第 xxx 个邀请,必须同时满足
- a[i]≥k−xa[i] \ge k-xa[i]≥k−x
- b[i]≤x−1b[i] \le x-1b[i]≤x−1
至此,我们可以用上述策略判断 kkk 是否满足条件。
注意二分区间为左闭右开。
AC代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1<<18;
int n,a[maxn],b[maxn];
bool can(int k)
{
int id = 1;
for (int i=1;i<=n;i++)
if (a[i] >= k-id && b[i] >= id-1) id++;
return (id - 1 >= k);
}
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%d %d",&a[i],&b[i]);
int l = 1, r = n+1;//二分区间[l,r)
while (r-l>1)
{
int mid = (r+l)/2;
if (can(mid)) l = mid;
else r = mid;
}
printf("%d\n",l);
}
return 0;
}
本文探讨了一道经典的算法题目,讲述了如何通过二分搜索来找出Keshi能邀请的朋友的最大数量。考虑到朋友间的财富差异限制,文章提供了一个有效的算法解决方案。
1365

被折叠的 条评论
为什么被折叠?



