2018 ICPC 徐州网络赛

本文探讨了使用动态规划解决面具分配问题,并通过矩阵快速幂技术高效计算特定矩阵的幂次,以解决复杂的网络更新问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Hard to prepare (dp)
题意

NN个客人,主人手上有2k个面具。
现在,NN个人围着圆桌相邻而坐,主人会给他们每个人发一个面具,相邻两个人得到的面具i,j必须满足条件:ii XNOR jj为正数。
问:有多少种方案?最终答案对 109+7 取膜

分析

mask[i] XNOR mask[1] >> 0 即:2进制下至少一位相同

定义:

  • dp[i][0]dp[i][0] —— 至第ii个人分发面具的方案数,且 mask[i] = mask[1]
  • dp[i][1] —— 至第ii个人分发面具的方案数,且 mask[i] XNOR mask[1] = 0
  • dp[i][2] —— 至第ii个人分发面具的方案数,且 mask[i] mask[1],mask[i] XNOR mask[1] 0

可以推得转移方程:

  • dp[i][0]=dp[i1][0]+dp[i1][2]dp[i][0]=dp[i−1][0]+dp[i−1][2]
  • dp[i][1]=dp[i1][1]+dp[i1][2]dp[i][1]=dp[i−1][1]+dp[i−1][2]
  • dp[i][0]=(dp[i1][0]+dp[i1][1])(2k2)+dp[i1][2](2k3)dp[i][0]=(dp[i−1][0]+dp[i−1][1])∗(2k−2)+dp[i−1][2]∗(2k−3)
代码
#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e6+100;
const int mod = 1e9+7;
int T,n,k;
long long dp[maxn][3],p[maxn];

void pre()
{
    p[0] = 1;
    for (int i=1;i<=maxn-100;i++)
    {
        p[i] = p[i-1]+p[i-1];
        if (p[i] >= mod) p[i]-=mod;
    }
    return;
}

int main()
{
    pre();
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d %d",&n,&k);
        dp[1][0] = 1;
        for (int i=2;i<=n;i++)
        {
            dp[i][0] = (dp[i-1][0] + dp[i-1][2]) % mod;
            dp[i][1] = (dp[i-1][1] + dp[i-1][2]) % mod;
            dp[i][2] = (((dp[i-1][0] + dp[i-1][1])*(p[k]-2+mod)) % mod + (dp[i-1][2]*(p[k]-3+mod)) % mod) % mod;
        }
        long long ans = ((dp[n][0] + dp[n][2])*p[k]) % mod;
        printf("%lld\n",ans);
    }
    return 0;
}

B. BE GE or NE (记忆化搜索)
题意

Boy 和 Girl 玩一场游戏,轮流行动,一共行动N次,初始分数为m,每一回合对于当前的分数可以做三种操作,+a[i],-b[i],*(-1)。如果a[i],b[i],c[i]某一个数等于0,那么不能选择这个操作。
过程中,Boy 希望分数尽量 k≥k,Girl希望分数尽量 l≤l,两人都按最优方案抉择,输出最终结果。

分析

对于当前分数scsc,如果是Bog行动,那么取最大分数,如果是Girl行动,那么取最小分数。

记忆化搜索所有情况,时间复杂度O(200n)O(200∗n)

代码
#include<bits/stdc++.h>
using namespace std;

const int maxn = 1010;
const int INF = 1e8;
int n,m,l,r,a[maxn],b[maxn],c[maxn];
int dp[maxn][210];

int dfs(int i,int sc)
{
    if (i == n+1) return sc;
    if (dp[i][sc+100] != INF) return dp[i][sc+100];

    int cnt,tmp;
    if (i % 2)/**first**/
    {
        tmp = -100;
        if (a[i])
        {
            cnt = min(100,sc+a[i]);
            tmp = max(tmp,dfs(i+1,cnt));
        }
        if (b[i])
        {
            cnt = max(-100,sc-b[i]);
            tmp = max(tmp,dfs(i+1,cnt));
        }
        if (c[i])
        {
            cnt = sc*(-1);
            tmp = max(tmp,dfs(i+1,cnt));
        }
        tmp = min(100,max(-100,tmp));
        dp[i][sc+100] = tmp;
    }
    else
    {
        tmp = 100;
        if (a[i])
        {
            cnt = min(100,sc+a[i]);
            tmp = min(tmp,dfs(i+1,cnt));
        }
        if (b[i])
        {
            cnt = max(-100,sc-b[i]);
            tmp = min(tmp,dfs(i+1,cnt));
        }
        if (c[i])
        {
            cnt = sc*(-1);
            tmp = min(tmp,dfs(i+1,cnt));
        }
        dp[i][sc+100] = tmp;
    }
    return dp[i][sc+100];
}

int main()
{
    scanf("%d %d %d %d",&n,&m,&r,&l);
    for (int i=1;i<=n;i++)
        scanf("%d %d %d",&a[i],&b[i],&c[i]);
    for (int i=0;i<=n;i++)
        for (int j=0;j<=200;j++) dp[i][j] = INF;

    int ans = dfs(1,m);
    if (ans >= r) printf("Good Ending\n");
    else
        if (ans <= l) printf("Bad Ending\n");
    else
        printf("Normal Ending\n");
    return 0;
}

I. Characters with Hash (模拟)
题意

将一个字符串ss和一个字符L,按所给的hash方法进行转换,hash方法为|Ls[i]||L−s[i]|,保留前导0,显然每个s[i]s[i]对应一个两位数。得到整个字符串的hash值后,删除前导0

分析

按题意模拟

代码
#include<bits/stdc++.h>
using namespace std;

const int maxn = 2e6+100;
int T,n,a[maxn];
char c,s[maxn];

int main()
{
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d %c",&n,&c);
        scanf("%s",s);
        for (int i=0;i<n;i++)
        {
            int cnt = abs(s[i] - c);
            a[i*2] = cnt/10;
            a[i*2+1] = cnt%10;
        }
        int k = 2*n-1;
        for (int i=0;i<2*n;i++)
            if (a[i] != 0)
            {
                k = i;
                break;
            }
        printf("%d\n",n*2-k);
    }
    return 0;
}

K. Morgana Net (矩阵快速幂)
题意

Ak+1[i][j]=f(i+mp=imi+mq=imAk[p][q]B[pi+m+1][qj+m+1])Ak+1[i][j]=f(∑p=i−mi+m∑q=i−mi+mAk[p][q]∗B[p−i+m+1][q−j+m+1])

给出A0A0,求AtAt中有多少个1

分析

对于Ak[i][j]Ak[i][j],由i+mp=imi+mq=imAk1[p][q]∑p=i−mi+m∑q=i−mi+mAk−1[p][q]转移而来,可以发现同一位置是通过同一个mmm∗m矩阵转移的,所以该矩阵的每一个数的贡献值是固定的,贡献值为B[pi+m+1][qj+m+1])B[p−i+m+1][q−j+m+1])

创建矩阵:

  • 1n21∗n2 的答案矩阵S=[A1,1,A1,2,...,An,n]S=[A1,1,A1,2,...,An,n]
  • n2n2n2∗n2的转移矩阵BB,且B[pn+q][in+j]=b[pi+m+1][qj+m+1],即Ak1[p][q]Ak−1[p][q]Ak[i][j]Ak[i][j]存在贡献,贡献值为b[pi+m+1][qj+m+1]b[p−i+m+1][q−j+m+1]

题目数组下标由(1,1)开始,代码数组由(0,0)开始

代码
#include<bits/stdc++.h>
using namespace std;

int T,n,m,t;
int a[20][20],b[20][20];

struct Matrix
{
    int n,m,d[70][70];
    Matrix (int N=0, int M=0)
    {
        n = N, m = M;
        memset(d,0,sizeof(d));
    }
    friend Matrix operator * (const Matrix &a, const Matrix &b)
    {
        Matrix c(a.n,b.m);
        for (int i=0;i<a.n;i++)
            for (int j=0;j<b.m;j++)
            {
                long long tmp = 0;
                for (int k=0;k<a.m;k++)
                    tmp += (a.d[i][k]*b.d[k][j] & 1);
                c.d[i][j] = tmp & 1;
            }
        return c;
    }
};

void solve()
{
    Matrix A(1,n*n),B(n*n,n*n);
    m = m/2;
    for (int i=0;i<n;i++)
        for (int j=0;j<n;j++)
        {
            A.d[0][i*n+j] = a[i][j] & 1;
            for (int p = i-m; p <= i+m; p++)
                for (int q = j-m; q <= j+m; q++)
                {
                    if (p < 0 || q < 0 || p >= n || q >= n) continue;
                    B.d[p*n+q][i*n+j] = b[p-i+m][q-j+m] & 1;
                }
        }

    while (t)
    {
        if (t & 1) A = A*B;
        B = B*B;
        t = t>>1;
    }
    int ans = 0;
    for (int i=0;i<n*n;i++) ans += A.d[0][i];
    printf("%d\n",ans);
    return;
}

int main()
{
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d %d %d",&n,&m,&t);
        for (int i=0;i<n;i++)
            for (int j=0;j<n;j++) scanf("%d",&a[i][j]);
        for (int i=0;i<m;i++)
            for (int j=0;j<m;j++) scanf("%d",&b[i][j]);
        solve();
    }
    return 0;
}
### 关于2024 ICPC网络预选的信息 #### 参规则 国际大学生程序设计竞ICPC)作为一项全球性的事,其参规则通常保持一定的稳定性。根据以往的经验和惯例[^1],每支参队伍由三名队员组成,他们需在同一台计算机上合作完成一系列算法问题的解答。比期间不允许使用任何外部资源或工具书,仅能依赖团队成员的知识储备以及现场提供的少量参考资料。 对于具体的2024年ICPC网络预选而言,虽然官方尚未发布详细的最新规定,但可以推测基本框架不会发生显著变化。例如,在线形式可能继续沿用近年来因疫情而普及的方式;同时也会严格监控作弊行为以维护公平竞争环境[^2]。 #### 时间安排 关于2024年的具体时间表目前还没有确切消息公布出来。然而按照传统模式来看,整个流程一般会经历以下几个阶段: - **报名期**:预计会在年初开放注册通道供各高校提交候选名单。 - **区域选拔/网络挑战**:这通常是多轮次举行,覆盖不同大洲和地区的时间段以便更多选手参与进来体验实战氛围并争取晋级机会。 - **全球总决准备阶段**:成功突围进入最终环节者将获得额外培训指导来提升实力迎接巅峰对决时刻。 以下是基于历史数据猜测的一个大致日程示例(请注意实际日期应参照官方通知为准): | 阶段 | 开始日期 | 结束日期 | |--------------------|---------------|----------------| | 报名截止 | 2024-02-15 | | | 初步筛选结果公告 | | 2024-03-01 | | 第一轮网络资格 | 2024-03-10 | 2024-03-12 | | 复活 | 2024-04-07 | 2024-04-09 | | 半决分区 | 各区自行决定 | 各区自行决定 | #### 题目解析 由于正式试题还未出炉之前无法提供针对性分析,不过可以根据往届经典案例来进行一些通用技巧分享: ```python def example_problem(): """ 假设有一道简单的字符串匹配问题. 给定两个长度不超过1e6 的字符串S 和T(S >= T),判断是否存在子串使得两者完全一致. 如果存在返回True;否则False. """ from collections import defaultdict def kmp_preprocess(pattern): lps = [0]*len(pattern) j=0;i=1; while i<len(pattern): if pattern[i]==pattern[j]: lps[i]=j+1;j+=1;i+=1; elif j!=0: j=lps[j-1]; else : lps[i]=0;i+=1 return lps; s="abcde";t="bcd"; lps=kmp_preprocess(t); q=[]; res=False; for char in s: while(q and (not t[len(q)]==char)): last=len(q)-lps[-1];q=q[:last]; if not q or t[len(q)]==char:q.append(char); if ''.join(q)==t:res=True;break; print(res) example_problem() ``` 上述代码片段展示了一个利用KMP算法解决字符串查找的经典方法之一。当然这只是众多可能性中的很小一部分而已。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值