Python中的list是python的内置数据类型,list中的数据类不必相同的。
在list中的数据类型保存的是数据所存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu。
Numpy中的array所存放的数据类型必须全部相同。
list1=[1,2,3,'a']
print list1
a=np.array([1,2,3,4,5])
b=np.array([[1,2,3],[4,5,6]])
c=list(a) # array到list的转换
print a,np.shape(a)
print b,np.shape(b)
print c,np.shape(c)
运行结果:
[1, 2, 3, 'a'] # 元素数据类型不同,并且用逗号隔开
[1 2 3 4 5] (5L,) # 一维数组,类型用tuple表示
[[1 2 3]
[4 5 6]] (2L, 3L)
[1, 2, 3, 4, 5] (5L,)
a=([3.234,34,3.777,6.33])
a为python的list类型
将a转化为numpy的array:
np.array(a)
得到类型:array([ 3.234, 34. , 3.777, 6.33 ])
将a转化为python的list
a.tolist()