基于Python爬虫爬取豆瓣Top250电影

基于Python爬虫爬取豆瓣Top250电影

学习视频:Python爬虫数据可视化《听障人士字幕版》国内首套,Python基础入门
由于能力有限,仅能将数据存储在Excel,未能实现存储在数据库中。
以下为源码,源码中函数“def saveData2DB(datalist,dbpath)”和“def init_db(dbpath)”功能未实现。

#-*- coding=utf-8 -*-
#@Time : 2021/7/23 9:25
#@Author : 西兰花
#@File : spider.py
#@Software : PyCharm

from bs4 import BeautifulSoup   #网页解析,获取数据
import re                       #正则表达式,进行文字匹配
import urllib.request,urllib.error#制定URL,获取网页数据
import xlwt                     #进行Excel操作
import sqlite3                  #进行SQlite数据库操作


def main() :
    baseurl = "https://movie.douban.com/top250?start="
    #1.爬取网页
    datalist = getData(baseurl)
    #savepath = "豆瓣电影TOP250.xls"   #存储路径为当前文件夹下
    dbpath = "movie.db"         #数据库
    # 3.保存数据
    #saveData(datalist,savepath)
    saveData2DB(datalist,dbpath)
    #askURL("https://movie.douban.com/top250?start=0")

#影片详细链接的规则
findLink   = re.compile(r'<a href="(.*?)">')#创建正则表达式对象,表示规则(字符串的模式)
#影片图片
findImgSrc = re.compile(r'<img.*src="(.*?)"',re.S)
#影片片名
findTitle  = re.compile(r'<span class="title">(.*)</span>')
#影片评分
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
#评价人数
findJudge  = re.compile(r'<span>(\d*)人评价</span>')
#找到概况
findInq    = re.compile(r'<span class="inq">(.*)</span>')
#找到影片的相关内容
findBd     = re.compile(r'<p class="">(.*?)</p>',re.S)


#爬取网页
def getData(baseurl) :
    datalist = []
    for i in range(0,10):#调用获取页面信息的函数10次
        url = baseurl + str(i * 25)
        html = askURL(url)#保存获取到的网页源码

        #2.逐一解析数据
        soup = BeautifulSoup(html,"html.parser")
        for item in soup.find_all('div',class_="item"): #查找符合要求的字符串,形成列表
            data = []   #保存一部电影的所有信息
            item = str(item)
            #print(item)
            #break
            #影片详细链接
            link = re.findall(findLink,item)[0]     #re库用来通过正则表达式查找指定的字符串
            data.append(link)                       #添加链接
            #print(link)

            ImgSrc = re.findall(findImgSrc,item)[0]
            data.append(ImgSrc)                     #添加图片
            #print(ImgSrc)

            titles = re.findall(findTitle,item)
            if(len(titles) == 2):
                ctitle = titles[0]                  #添加中文名
                data.append(ctitle)
                otitle = titles[1].replace("/","")  #去掉无关的符号
                data.append(otitle)                 #添加外文名
            else:
                data.append(titles[0])
                data.append(' ')                    #留空
            #print(titles)

            rating = re.findall(findRating,item)[0]
            data.append(rating)                     #添加评分
            #print(rating)

            judgeNum = re.findall(findJudge,item)
            data.append(judgeNum)                   #添加评价人数
            #print(judgeNum)

            inq = re.findall(findInq,item)
            if len(inq) != 0:
                inq = inq[0].replace("。","")        #去掉句号
                data.append(inq)                     #添加概述
            else:
                data.append(" ")                     #留空
            #print(inq)

            bd = re.findall(findBd,item)[0]
            bd = re.sub('<br(\s+)?/>(\s+)?'," ",bd) #去掉<br/>
            bd = re.sub('/'," ",bd)                 #替换
            data.append(bd.strip())                 #去掉前后的空格
            #print(bd)
            datalist.append(data)                     #把处理好的一部电影信息放入datalist
        #print(datalist)

    return datalist

#得到指定一个url的网页信息
def askURL(url):
    #模拟浏览器头部信息,向豆瓣服务器发送消总
    head = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36"}
    #用户代理,表示告诉豆瓣服务器,我们是什么类型的机器,浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件
    request = urllib.request.Request(url,headers=head)
    html = ""
    try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
        #print(html)
    except urllib.error.URLError as e:
        if hasattr(e,"code"):
            print(e.code)
        if hasattr(e,"reason"):
            print(e.reason)

    return html

#Excel保存数据
def saveData(datalist,savepath) :
    book = xlwt.Workbook(encoding="utf-8",style_compression=0)  #创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top250',cell_overwrite_ok=True) #创建工作表
    col = ("电影详情链接","图片链接","影片中文名","影片外文名","评分","评价数","概况","相关信息")
    for i in range(0,8):
        sheet.write(0,i,col[i]) #列名
    for i in range(0,250):
        print("第%d条"%(i+1))
        data = datalist[i]
        for j in range(0,8):
           sheet.write(i+1,j,data[j])

    book.save(savepath)    #保存

#数据库存数据
def saveData2DB(datalist,dbpath):
    init_db(dbpath)
    conn = sqlite3.connect(dbpath)
    cur = conn.cursor()

    for data in datalist:
        for index in range(len(data)):
            if index == 4 or index == 5:
                continue
            data[index] = '"'+data[index]+ '"'
        sql = '''
                insert into movie250(
                info_link,pic_link,cname,ename,score,rated,instrodruction,info)
                values(%s)'''%",".join(data)
        #'%s' %data for data in data
        # values(%s)'''%",".join(data)
        #print(sql)
        cur.execute(sql)
        conn.commit()
    cur.close()
    conn.close()

#创建数据表
def init_db(dbpath):
    sql ='''
        create table movie250
        (
        id integer primary key autoincrement,
        info_link text,
        pic_link text,
        cname varchar,
        ename varchar,
        score numeric,
        rated numeric,
        instrodruction text,
        info text
        )
        '''
    # 创建数据表
    conn = sqlite3.connect(dbpath)
    cursor = conn.cursor()
    cursor.execute(sql)
    conn.commit()
    conn.close()

if __name__ == "__main__" : #当程序执行时
    #调用函数
    #main()
    init_db("movietest.db")
    print("爬取完毕!")
### 回答1: 要爬取豆瓣Top250电影列表,可以使用Python爬虫库如Scrapy或BeautifulSoup来实现。首先需要构造请求获取网页源代码,然后使用解析库解析网页源代码,提取出所需数据。如果需要爬取大量数据,可以考虑使用多线程或分布式爬虫来提高爬取效率。 ### 回答2: 豆瓣是一个广受读者喜爱的网站,凭借其优质的图书、电影和音乐资源,受到了广泛的赞誉。豆瓣电影排行榜中,豆瓣Top250电影是大家喜欢的精选作品。 然而,要手动获取所有电影的信息就会非常耗时而繁琐。幸运的是,Python爬虫可以轻松解决这个问题。 首先,我们需要清楚自己需要什么信息,比如电影的名称、评分、导演、演员、年份等等。然后,我们需要安装一些Python库,如Requests和BeautifulSoup4,使用这些库来编写我们的Python爬虫代码。 在代码中,我们首先需要向豆瓣服务器发送请求,以获取特定网址的源代码。我们可以使用Requests库来发送HTTP请求,然后将获得的网页源代码传输给BeautifulSoup4的解析器对象,以便获取所需的文本。 在处理完整个网页源代码后,我们通过使用BeautifulSoup4的选择器语法来定位电影信息的位置。然后,我们可以使用Python的正则表达式或字符串操作来提取所需的文本。 在获取电影信息后,我们需要将其保存到本地文件或数据库中,以便后续处理和查询。为此,我们可以使用Python的File I / O或第三方库(如pandas)来实现。 注意:在获取和使用网站上的信息时,请尊重数据所有者的权利。请遵守网站上的有效使用政策并且避免对其进行不当操作。 ### 回答3: 豆瓣是一个非常优秀的电影、图书 and 音乐评论平台,每个人可以在上面发布自己的评论以及对别人的评论进行点赞、评论回复等操作。而豆瓣上的top250,是指评分最高、最受欢迎的250部电影。如果你想获取这些电影的信息、评论以及评分,那么你可以使用Python编写一个豆瓣爬虫。以下是具体实现步骤: 1. 获取网址和请求头 首先你需要在浏览器中打开豆瓣top250电影页面,然后右键点击鼠标选择“检查”或者“审查元素”。接着选择“network”选项卡,手动刷新页面,即可在右侧窗口看到各种请求的详细信息,包含请求头和url,你需要找到请求头和url,将其复制到你的Python代码中,如下所示: ``` import requests url = 'https://movie.douban.com/top250' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36'} response = requests.get(url, headers=headers) print(response.text) ``` 通过上述方法,你可以获取到豆瓣电影top250的页面源码。 2. 解析网页源码 由于获取的是网页源码,需要使用爬虫框架如BeautifulSoup或scrapy等工具来解析网页内容。 以BeautifulSoup为例,你需要在Python中添加如下代码: ``` from bs4 import BeautifulSoup soup = BeautifulSoup(response.text, 'html.parser') # 找到所有的“ol”元素 ol_elements = soup.find_all('ol') ``` 上面的代码可以获取页面中所有的ol元素,对于电影排名列表的ol元素,可以通过其class属性定位到。下面是代码片段: ``` # 获取排名电影列表的ol元素 movie_ol_element = soup.find_all('ol', class_='grid_view')[0] # 获取每一个li,即每一部电影的信息 movie_li_elements = movie_ol_element.find_all('li') ``` 3. 爬取相关电影信息 接下来就需要对页面中每个电影的信息进行爬取了,每个电影的信息都包含电影名称、导演、演员、评分、简介、封面图片等。 由于爬取的信息较多,这里只演示爬取电影名称、评分、导演和演员信息的代码: ``` movies = [] for movie_li_element in movie_li_elements: # 获取电影名称 movie_name = movie_li_element.find('span', class_='title') if movie_name is None: continue # 获取电影评分 movie_rating = movie_li_element.find('span', class_='rating_num').string # 获取电影导演和演员 movie_info_elements = movie_li_element.find_all('p')[0].find_all('br') movie_director = movie_info_elements[0].next_sibling.strip() movie_actor = movie_info_elements[1].next_sibling.strip() # 将电影信息存储到movies列表中 movies.append({ 'name': movie_name.string, 'rating': movie_rating, 'director': movie_director, 'actor': movie_actor }) ``` 4. 存储爬取数据 最终你需要将爬取到的信息存储到文件中或者写入数据库中,以便后续使用。这里演示将爬取到的电影信息存储到csv文件中,相关代码如下: ``` import csv with open('douban_top250_movies.csv', 'w', newline='', encoding='utf-8') as csvfile: fieldnames = ['name', 'rating', 'director', 'actor'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for movie in movies: writer.writerow(movie) ``` 至此,一个完整的豆瓣top250爬虫就完成了,你可以根据自己需求调整代码,获取更多电影信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值