HAI + Dify | 耗资1元构建DeepSeek门诊导诊助手

前言

HAI HAI HAI!腾讯云CPU版1元限时体验活动它来了。AI时代依赖的就是算力资源,当我们还在因为自己电脑配置跟不上而苦恼的时候,不妨试一下HAI。

最近也是在研究构建AI应用的工具:Dify,前两天也在腾讯云服务器上安装了 Dify,具体可参考文章:2C2G的云服务器如何安装dify。之前苦于没有大模型的支持,这次活动就打算基于 HAI 实例上的DeepSeek R1模型,和 Dify 一起构建一个智能导诊助手

HAI

HAI(高性能应用服务)作为一款面向 AI 的算力应用服务产品。既打破了 GPU 服务器的局限性,同时也为开发者提供了即插即用的强大算力和常见环境,让开发者可以快速部署语言模型(LLM)、AI 绘图、数据科学等高性能应用,提高了产品的易用性,也降低了技术门槛。

我们进入 HAI活动首页,可以看到本次活动一共推出了不同规格的两种产品:HAI-CPUHAI-GPU

HAI-CPU 从 8C16G 到 64C256G 的实例都给出了一元购的体验活动,所以本次我就使用 HAI-CPU 的实例。

这里要是问我:同样的钱为什么不买 64C256G的,我只能说那天活动太火爆没有抢到。点击立即购买进入支付页。

完成支付,我们就拥有了一个高配置的 HAI-CPU 实例。

等待几分钟部署,就可以在HAI控制台实例列表看到运行的 HAI。

连接HAI

在分配的 HAI 实例的右下方找到算力连接,里面提供了多种连接方式,可以连接到 HAI 实例中预装的不同环境。

这里我们主要是使用 HAI 中的 DeepSeek 大模型,所以这里就点击 ChatbotUI,查看一下 DeepSeek 是否可用。

在 ChatbotUI 中预装了 DeepSeek-R1:8b 模型,我们在对话框中输入即可获取响应。但是想要连接 DeepSeek,需要知道服务进程和端口。我们通过 终端连接 HAI 实例。

输入密码即可登录到后台。

使用 TOP 就可以看 HAI 实例的算力配置。

DeepSeek大模型

言归正传,通常 DeepSeek 是 ollama 运行的,这里使用 ollama list 查看运行的模型。

如图所示,HAI 中的 DeepSeek 运行在 ollama 中,我们执行下方命令查看 ollama 的端口。

env | grep OLLAMA_HOST

如下图所示,端口为 6399。

接下来我们就需要在 Dify 中接入 HAI 中的 DeepSeek。

Dify

我们登录 Dify,在设置中找到模型供应商。

然后在插件市场中找到 Ollama 进行安装。

配置模型

然后在模型供应商里面就找到了 Ollama,点击配置,填入模型名称和URL。

URL中的IP就是 HAI 实例的IP,端口为6399,点击保存,HAI 实例运行的 deepseek-r1:8b 模型就被引入到 dify 中。

构建 Agent

在 dify 中构建一个名为 门诊导诊助手 的 Agent。

在填入描述之后,点击创建,这样就创建成功了一个智能体。在工作室首页点击刚创建的智能体,就进入到了编排页面。

1. 创建变量

对于导诊助手来说,有一些信息是必须要填写的,例如:年龄和症状描述。点击创建变量,我们就可以选择变量类型、名称和显示名称。

按照上述步骤,我们创建年龄、症状和性别字段。

在右侧调试对话框中,我们预设的字段的就会以表单的形式显示。

填写完表单发起提问,导诊助手就使用 HAI 的 DeepSeek 大模型进行了回复。

2. 提示词

在上面创建好变量之后,我们在提示词中可以引用这些变量,当用户输入症状之后,提示词中就能接收到症状变量。

提示词如下:

症状{{symptom}},年龄为{{age}},性别{{sex}},基于医学知识库,能够准确分析患者症状并推荐对应科室。协助完成导诊。

## 角色特点
温暖贴心:语气亲切,避免冰冷的机器回复,让患者感到被关怀。
高效便捷:提供就诊时间、排队情况、医保政策等相关信息,帮助患者减少等待时间。
支持多轮对话:能够连续追问患者症状,提供更精确的导诊建议。

知识库

对于导诊来说,除了科室的推荐还有就是医生的推荐,如何让导诊助手知道医院有哪些医生,这里就需要创建知识库。

在知识库创建页面,选择我们整理的医生列表为数据源,进行上传。点击下一步,进入文本的分段与清洗。

从右侧可以看到在医生列表.xlsx中的数据,被知识库分成了多个chunk。点击下一步就完成了知识库的创建。

我们进入知识库,在知识库中可以完善和修改知识库的名称、描述和可见权限。

如果想要给你的导诊助手赋予更多的功能,我们也可以创建一些例如居民医保的政策知识库。

在知识库页面下,我们可以看到我们创建的导诊助手知识库。

我们在 Agent 的编排页面就可以关联知识库。

这样,导诊助手在推荐医生的时候就会关联知识库。

工作流

为了在导诊时,更精准的完成推荐医生的需求,我们可以使用工作流来完成,创建一个工作流。

科室判断

工作流比较简单,从用户输入的问题中提取参数,然后让调用大模型来判断科室。

这里的提取参数判断科室的节点,使用的都是 HAI 中的 DeepSeek 大模型,我们点击节点,查看节点的配置信息。

SYSTEM 中输入提示词,并在 USER 中输入前置参数提取节点提取的一些变量,用于 DeepSeek 判断患者到底是哪个一个科室。

知识检索

在判断科室完成之后,输出值就传递给 知识检索 节点,调用医生知识库。

启动调试,在输入问题之后查看知识检索节点的输出。

在知识检索节点中,可以看到节点在知识库中检索到了对应科室的医生数据。

经过大 HAI 中大模型的处理之后,工作流基于知识库完成了科室和医生的推荐。

将工作流关联到导诊助手,就完成了整个导诊助手的构建,在 HAI 监控页面可以监控资源使用率。

结语

HAI 的出现,除了提供了大模型需要的CPU/GPU和内存等计算资源外,在某些应用场景下也提供了大模型的云托管。在本篇实践中,我使用了 deepSeek-r1:8b 模型,资源使用率已经拉满。如果是更高规格的 HAI,你可以安装更大参数的 DeepSeek 大模型。

HAI 提供的各种连接方式以及预装的各种环境,也为开发者降低了门槛,如果对 AI 和大模型有兴趣,HAI 将是你的不二之选。

### DeepSeekDify 的集成、对比以及故障排除 #### 集成概述 对于希望利用本地部署的DeepSeek R1Dify进行集成的企业来说,重要的一点在于理解DeepSeek R1作为一个推理模型并不支持函数调用功能[^1]。这意味着该版本不适合用于需要复杂交互逻辑的应用场景,比如作为Dify平台上的智能代理组件。 然而,如果考虑升级至DeepSeek V3,则可以获得更广泛的功能集,包括但不限于增强的数据处理能力和更好的兼容性,从而实现更为紧密的系统间协作。 #### 技术栈组合优势 通过采用Ollama + DeepSeek + Dify这样的技术栈来构建企业的私有知识库解决方案,不仅能够提高数据的安全性和可控度,还能显著改善团队成员获取所需信息的速度和准确性[^2]。特别是当涉及到敏感资料管理和高效检索方面的需求时,这种方案显得尤为适用。 #### 实际操作指南 为了简化安装过程并确保顺利运行,在实际环境中可以通过简单的命令行指令完成特定版本DeepSeek模型(如`deepseek-coder`)的下载工作: ```bash ollama pull deepseek-coder ``` 上述代码片段展示了如何借助Ollama工具从官方仓库中提取所需的预训练模型实例[^3]。 #### 故障排查建议 遇到任何关于这两者之间连接失败或其他异常情况时,应首先确认所使用的DeepSeek版本是否满足目标应用的要求;其次检查网络配置参数设置无误,并验证API接口定义正确与否。最后可参照官方文档中的常见问题解答部分寻找可能存在的已知错误及其修复方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值