第一章:随即分析中必会的基础知识

应用随机分析

主要是时间、状态都连续的随机过程。

引言

布朗运动

时间与空间的尺度问题

比如建模时,要把研究的单位放在一个合适的尺度。如,研究太阳系的运动,最小的单位应放在行星上,不考虑地球上的人的分布。如,研究北京市每天乘坐地铁的人数,最小的单位应放在人上。

随机分析的应用尺度:

  • 宏观 (大)人能感知的尺度。 研究肉眼差不多能够看见的,如扩散问题,一滴墨水到水杯里。
  • 微观 (小)分子运动的尺度。1e-6~1e-9
  • 介观 (中)花粉运动的尺度:微秒,1e-6。注意:花粉要比分子大得多。

注意宏观与微观是以研究的问题为区分的。

记号:

τ ​ \tau​ τ:中间尺度的时间间隔

Δ ​ \Delta​ Δ​:单个粒子运动的增量

φ ( Δ ) ​ \varphi(\Delta)​ φ(Δ): Δ ​ \Delta​ Δ​的分布律

关于 φ ( Δ ) ​ \varphi(\Delta)​ φ(Δ):的一些性质:

  1. 只有当 Δ ​ \Delta​ Δ​很小时, φ ( Δ ) ​ \varphi(\Delta)​ φ(Δ)不为0.
  2. ∫ − ∞ + ∞ φ ( Δ ) d Δ = 1 \int_{-\infty}^{+\infty}\varphi(\Delta)d\Delta=1 +φ(Δ)dΔ=1
  3. 对称性: φ ( Δ ) = φ ( − Δ ) ​ \varphi(\Delta) = \varphi(-\Delta)​ φ(Δ)=φ(Δ)

f ( x , t ) ​ f(x,t)​ f(x,t): t ​ t​ t时间 x ​ x​ x处的分子数密度

f ( x , t + τ ) = ∫ − ∞ ∞ f ( x + Δ , t ) φ ( − Δ ) d Δ = ∫ − ∞ ∞ f ( x + Δ , t ) φ ( Δ ) d Δ ​ f(x,t+\tau) = \int_{-\infty}^{\infty}f(x+\Delta,t) \varphi(-\Delta)d\Delta=\int_{-\infty}^{\infty}f(x+\Delta,t) \varphi(\Delta)d\Delta​ f(x,t+τ)=f(x+Δ,t)φ(Δ)dΔ=f(x+Δ,t)φ(Δ)dΔ​ (全概率公式)

f ( x , t + τ ) ​ f(x,t+\tau)​ f(x,t+τ)关于 t ​ t​ t作泰勒展开(对时间展开到一阶)
f ( x , t + τ ) = f ( x , t ) + ∂ f ∂ t τ f(x,t+\tau) = f(x,t)+\frac{\partial f}{\partial t}\tau f(x,t+τ)=f(x,t)+tfτ
f ( x + Δ ) ​ f(x+\Delta)​ f(x+Δ)关于 x ​ x​ x作泰勒展开(对空间展开到二阶)
f ( x + Δ , t ) = f ( x , t ) + Δ ∂ f ∂ x + Δ 2 2 ! ∂ 2 f ∂ x 2 f(x+\Delta,t) = f(x,t)+\Delta \frac{\partial f}{\partial x}+\frac{\Delta^2}{2!}\frac{\partial^2 f}{\partial x^2} f(x+Δ,t)=f(x,t)+Δxf+2!Δ2x22f

f ( x , t ) + ∂ f ∂ t τ = ∫ − ∞ ∞ [ f ( x , t ) + Δ ∂ f ∂ x + Δ 2 2 ! ∂ 2 f ∂ x 2 ] φ ( Δ ) d Δ = f + 0 + 1 2 ! ∂ 2 f ∂ x 2 ∫ − ∞ ∞ Δ 2 φ ( Δ ) d Δ \begin{aligned} f(x, t)+\frac{\partial f}{\partial t} \tau &=\int_{-\infty}^{\infty}\left[f(x, t)+\Delta \frac{\partial f}{\partial x}+\frac{\Delta^{2}}{2 !} \frac{\partial^{2} f}{\partial x^{2}}\right] \varphi(\Delta) d \Delta \\ &=f+0+\frac{1}{2 !} \frac{\partial^{2} f}{\partial x^{2}} \int_{-\infty}^{\infty} \Delta^{2} \varphi(\Delta) d \Delta \end{aligned} f(x,t)+tfτ=[f(x,t)+Δxf+2!Δ2x22f]φ(Δ)dΔ=f+0+2!1x22fΔ2φ(Δ)dΔ

∂ f ∂ t = ∂ 2 f ∂ x 2 ⋅ 1 2 ! ∫ − ∞ ∞ Δ 2 φ ( Δ ) d Δ \frac{\partial f}{\partial t}=\frac{\partial^2 f}{\partial x^2}\cdot\frac{1}{2!}\int_{-\infty}^{\infty}\Delta^2\varphi(\Delta)d\Delta\\ tf=x22f2!1Δ2φ(Δ)dΔ
我们可以得到一个热传导方程:
∂ f ∂ x = D ∂ 2 f ∂ x 2 \frac{\partial f}{\partial x}=D\frac{\partial^2 f}{\partial x^2} xf=Dx22f
解为 f ( x , t ) = 1 2 π 1 2 D τ e x 2 4 D t f(x,t) = \frac {1} {\sqrt{2\pi}} \frac{1}{\sqrt{2D\tau}}e^\frac{x^2}{4Dt} f(x,t)=2π 12Dτ 1e4Dtx2 是个正态分布。

第一章

1.1随机事件及概率

首先定义三件套 ( Ω , F , P ) (\Omega,\mathscr{F},P) (Ω,F,P)

Ω \Omega Ω:样本空间。要研究的随机试验所有可能出现的结果

​ 样本点:一个随机试验(trial)可能出现的一个结果,记为 ω \omega ω

​ 基本事件:样本点。

​ 事件:Ω的子集

F \mathscr{F} F: 事件的集合。

  1. 若Ω的样本点为有限或可数个。。。则事件集是 Ω \Omega Ω的所有子集构成的集合。

  2. 若Ω是不可数集合,上述做法行不通,找出合适的、需要的,组成一个σ域

    σ域:σ域是由样本空间一些集合为元素(通常包括 )组成的集合。

    全空间Ω和空集 ∅ \emptyset 构成最小σ域,称做“平凡σ域”。 { Ω , ∅ } \{\Omega,\emptyset\} { Ω,}

    对于Ω的任意子集A, { Ω , A , A c , ∅ } \{\Omega,A,A^c,\emptyset\} { Ω,A,Ac,}是σ域,它是最小的非平凡σ域.

P P P: 事件发生的概率

思考 [ 0 , 1 ] [0,1] [0,1] ( 0 , 1 ) (0,1) (0,1)建立一个一一对应关系。

解法一:做从(0,1)到[0,1]映射 f ( x ) f(x) f(x)
分段函数:
f ( x ) = { 0 x = 1 2 1 n + 2 x = 1 n + 2 , n ∈ N + x x = [ 0 , 1 ] \  以上  f(x)=\left\{\begin{array}{ll}0 & x=\frac{1}{2} \\ \frac{1}{n+2} & x=\frac{1}{n+2}, n \in N^{+} \\ x & x=[0,1] \backslash \text { 以上 }\end{array}\right. f(x)= 0n+21xx=21x=n+21,nN+x=[0,1]\ 以上 

解法二:

我们知道,无限集合与有限集合的一个最大区别就是: 无限集合可以与其真子集对等.

我们把区间 [ 0 , 1 ] [0,1] [0,1] ( 0 , 1 ) (0,1) (0,1)中的元素分为有理数与无理数,如开区间 ( 0 , 1 ) (0,1) (0,1)中的有理数表示为

Q = { r 1 , r 2 , . . . } Q=\{r_{1},r_{2},...\} Q={ r1,r2,...} .我们按如下方式对应

r 1 , r 2 , . . . , r n , . . . r_{1},r_{2},...,r_{n},... r1,r2,...,rn,...

0 , 1 , r 1 , r 2 , . . . , r n , . . . 0,1,r_{1},r_{2},...,r_{n},... 0,1,r1,r2,...,rn,...

对于无理数,还按原来的方式对应.

下面我们确定 p p p,也就是对于任意的 A ∈ F A\in \mathscr{F} AF, P ( A ) = ? P(A)=? P(A)=?

定义 P P P是定义于 F \mathscr{F} F上,值域为 [ 0 , 1 ] [0,1] [0,1]的集合函数,满足:

(i) P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1

(ii) 对任意两两互不相交的 E 1 , E 2 , . . . E_{1},E_{2},... E1,E2,...,有, P ( ⋃ i = 1 ∞ E n ) = ∑ i = 1 ∞ P ( E i ) P(\bigcup_{i=1}^{\infty}{E_n)=\sum_{i=1}^{\infty}{P\left( E_i \right)}} P(i=1En)=i=1P(Ei)

​PS:

  • (ii)称为概率的可列可加性,是公理,必须承认.

  • P的性质:

    • P ( ∅ ) = 0 P(\emptyset)=0 P()=0
    • P ( A c ) = 1 − P ( A ) P(A^{c})=1-P(A) P(Ac)=1P(A)
    • A ⊂ B A\subset B AB,则 P ( B \ A ) = P ( B ) − P ( A ) P(B\backslash A)=P(B)-P(A) P(B\A)=P(B)P(A)
  • 可以任意定义不同的 P P P. 例如 掷一枚质地均匀骰子,我们知道 P ( 1 ) = P ( 2 ) = ⋯ = P ( 6 ) = 1 6 P(1)=P(2)=\cdots = P(6)=\frac16 P(1)=P(2)==P(6)=61.现在加入去掉“质地均匀”这个条件。即三件套 ( Ω , F , P ) (\Omega,\mathscr{F},P) (Ω,F,P)只改变 P P P.如下

  • P ( 1 ) = P ( 2 ) = P ( 3 ) = 1 9 , P ( 4 ) = P ( 5 ) = P ( 6 ) = 2 9 P(1)=P(2)=P(3)=\frac19 , \quad P(4)=P(5)=P(6)=\frac29 P(1)=P(2)=P(

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值