[C++][算法基础]四种求组合数基本情况

文章介绍了四个不同的编程题目,涉及计算给定整数对的组合值,以及在不同数据范围和限制下使用高精度计算、矩阵操作和质数性质的解决方案。每个部分都提供了输入输出样例和对应的代码实现。
摘要由CSDN通过智能技术生成

I. 1≤n≤10000,1≤b≤a≤2000

给定 𝑛 组询问,每组询问给定两个整数 𝑎,𝑏,请你输出 C_{a}^{b}mod(10^{9}+7) 的值。

输入格式

第一行包含整数 𝑛。

接下来 𝑛 行,每行包含一组 𝑎 和 𝑏。

输出格式

共 𝑛 行,每行输出一个询问的解。

数据范围

1≤n≤10000,
1≤b≤a≤2000

输入样例:
3
3 1
5 3
2 2
输出样例:
3
10
1

 代码:

#include<iostream>
using namespace std;

const int N = 2010,mod = 1e9 + 7;
int n,a,b;
int C[N][N];

void CreateMatrix(){
    for(int i = 0;i < N;i ++){
        for(int j = 0;j <= i;j ++){
            if(j == 0){
                C[i][j] = 1;
            }else{
                C[i][j] = (C[i-1][j-1] + C[i-1][j]) % mod;
            }
        }
    }
}

int main(){
    cin>>n;
    CreateMatrix();
    while(n--){
        cin>>a>>b;
        cout<<C[a][b]<<endl;
    }
    return 0;
}

II. 1≤n≤10000,1≤b≤a≤10^5

给定 𝑛 组询问,每组询问给定两个整数 𝑎,𝑏,请你输出 C_{a}^{b}mod(10^{9} + 7) 的值。

输入格式

第一行包含整数 𝑛。

接下来 𝑛 行,每行包含一组 𝑎 和 𝑏。

输出格式

共 𝑛 行,每行输出一个询问的解。

数据范围

1≤n≤10000,
1≤b≤a≤10^{5}

输入样例:
3
3 1
5 3
2 2
输出样例:
3
10
1

代码:

#include<iostream>
using namespace std;

const int N = 100010,mod = 1e9 + 7;
int fact[N],revfact[N];
int n,a,b;

int QuickMOD(int a,int b,int p){
    int res = 1;
    while(b != 0){
        if((b & 1) == 1){
            res = (long long) res * a % p;
        }
        a = (long long) a * a % p;
        b /= 2;
    }
    return res;
}

int main(){
    cin>>n;
    fact[0] = revfact[0] = 1;
    for(int i = 1;i < N;i ++){
        fact[i] = (long long) fact[i - 1] * i % mod;
        revfact[i] = (long long) revfact[i - 1] * QuickMOD(i, mod - 2, mod) % mod;
    }
    while(n--){
        cin>>a>>b;
        cout<<(long long) fact[a] * revfact[b] % mod * revfact[a - b] % mod<<endl;
    }
    return 0;
}

III. 1≤n≤20,1≤b≤a≤10^18,1≤p≤10^5

给定 𝑛 组询问,每组询问给定三个整数 𝑎,𝑏,𝑝,其中 𝑝 是质数,请你输出 C_{a}^{b}modp 的值。

输入格式

第一行包含整数 𝑛。

接下来 𝑛 行,每行包含一组 𝑎,𝑏,𝑝。

输出格式

共 𝑛 行,每行输出一个询问的解。

数据范围

1≤n≤20,
1≤b≤a≤10^{18},
1≤p≤10^{5},

输入样例:
3
5 3 7
3 1 5
6 4 13
输出样例:
3
3
2

代码:

#include<iostream>
using namespace std;

int n,p;
long long a,b;

long long QuickMOD(int a,int b,int p){
    long long res = 1;
    while(b != 0){
        if((b & 1) == 1){
            res = (long long) res * a % p;
        }
        a = (long long) a * a % p;
        b /= 2;
    }
    return res;
}

long long C(long long a,long long b,int p){
    long long res = 1;
    for(int i = 1,j = a;i <= b;i ++,j --){
        res = (long long)res * j % p;
        res = (long long)res * QuickMOD(i,p-2,p) % p;
    }
    return res;
}

long long Lucas(long long a,long long b,int p){
    if(a < p && b < p){
        return C(a,b,p);
    }else{
        return (long long) Lucas(a%p,b%p,p) * Lucas(a/p,b/p,p) % p;
    }
}

int main(){
    cin>>n;
    while(n--){
        cin>>a>>b>>p;
        cout<<Lucas(a,b,p)<<endl;
    }
    return 0;
}

IV. 1≤b≤a≤5000(结果极大)

输入 𝑎,𝑏,求 C_{a}^{b} 的值。

注意结果可能很大,需要使用高精度计算。

输入格式

共一行,包含两个整数 𝑎 和 𝑏。

输出格式

共一行,输出 C_{a}^{b} 的值。

数据范围

1≤b≤a≤5000

输入样例:
5 3
输出样例:
10

代码:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

const int N = 5010;
int a, b, cnt;
int Primes[N], st[N], leave[N];

void GetPrime(int n)
{
    for(int i = 2;i <= n;i ++)
    {
        if(st[i] == 0){
            Primes[cnt] = i;
            cnt++;
        }
        for(int j = 0; Primes[j]*i <= n; j++)
        {
            st[Primes[j] * i] = 1;
            if(i % Primes[j] == 0){
                break;
            }
        }
    }
}

int GetNum(int x, int p) {
    int res = 0;
    while (x) {
        res += x / p;
        x /= p;
    }
    return res;
}

vector<int> HighMul(vector<int> a, int b) {
    vector<int> c;
    int temp = 0;
    for (unsigned int i = 0; i < a.size(); i++) {
        temp += a[i] * b;
        c.push_back(temp % 10);
        temp /= 10;
    }
    while (temp) {
        c.push_back(temp % 10);
        temp /= 10;
    }
    return c;
}

int main() {
    cin >> a >> b;
    GetPrime(a);
    for (int i = 0; i < cnt; i++) {
        int pt = Primes[i];
        leave[i] = GetNum(a, pt) - GetNum(b, pt) - GetNum(a - b, pt);
    }
    vector<int> res;
    res.push_back(1);
    for (int i = 0; i < cnt; i++) {
        for (int j = 0; j < leave[i]; j++) {
            res = HighMul(res, Primes[i]);
        }
    }
    for (int i = res.size() - 1; i >= 0; i--) {
        cout << res[i];
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值