这是kuangbin模板上的题,今天才发现了来做。感觉很巧妙,先筛出sqrt(R)内的素数,再通过这个素数筛出[L,R]内的合数,为了方便标记先减去L,最后重新记录加上L。附上AC代码如下:
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
#define ll long long
const int MAX=1000005;
int pri[MAX];
void getPrime()
{
memset(pri,0,sizeof(pri));
for(int i=2;i<MAX;i++)
{
if(!pri[i])
pri[++pri[0]]=i;
for(int j=1;j<=pri[0]&&i*pri[j]<MAX;j++)
{
pri[i*pri[j]]=1;
if(i%pri[j]==0)
break;
}
}
}
bool notpri[MAX];
ll prime2[MAX];
void getPrime2(int l,int r)
{
memset(notpri,false,sizeof(notpri));
if(l<2) l=2;
for(int i=1;i<=pri[0]&&(ll)pri[i]*pri[i]<=r;i++)
{
int s=l/pri[i]+(l%pri[i]>0); //s*pri[i]是大于等于L的第一个素数
if(s==1) s=2;
for(int j=s;(ll)j*pri[i]<=r;j++)
{ //j*pri[i]一定是合数
if((ll)j*pri[i]>=l)
notpri[j*pri[i]-l]=true;//为了方便标记先暂时减L
}
}
prime2[0]=0;
for(int i=0;i<=r-l;i++)
if(!notpri[i])//是质数
prime2[++prime2[0]]=i+l;//重新加上L
}
int main()
{
getPrime();
int l,r;
while(scanf("%d%d",&l,&r)==2)
{
getPrime2(l,r);
if(prime2[0]<2)
printf("There are no adjacent primes.\n");
else
{
int mi=INF,ma=-1;
int mi_l,mi_r,ma_l,ma_r;
for(int i=1;i<prime2[0];i++)
{
if(prime2[i+1]-prime2[i]>ma)
ma=prime2[i+1]-prime2[i],ma_l=prime2[i],ma_r=prime2[i+1];
if(prime2[i+1]-prime2[i]<mi)
mi=prime2[i+1]-prime2[i],mi_l=prime2[i],mi_r=prime2[i+1];
}
printf("%d,%d are closest, %d,%d are most distant.\n",mi_l,mi_r,ma_l,ma_r);
}
}
return 0;
}