Pytorch基础(1)——创建Tensor

博客主要介绍了使用PyTorch创建Tensor的多种方法,包括创建未初始化、随机初始化、全0、全1的Tensor,还可根据数据创建。同时说明了获得Tensor形状的方式,如使用x.size()和x.shape。
  • 创建一个5x3未初始化Tensor,Tensor中的数据是任意的未初始化垃圾数据:

        x = torch.empty(5, 3)        或        x = torch.Tensor(5, 3)    #注意是大写T

  • 创建⼀个5x3的随机初始化的Tensor

        x = torch.rand(5, 3)        数据在[0,1)之间服从均匀分布

        x = torch.randn(5, 3)        数据服从标准正态分布:
        
        x = torch.normal(0, 1, (5, 3))    #torch.normal(mean,std,*size)数据服从mean平均,std标准差
  • 创建⼀个5x3long型全0Tensor: 用dtype指定数据类型

        x = torch.zeros(5, 3, dtype=torch.long)        # 创建全0的Tensor,ones(*sizes)

        x = torch.ones(10, 1)        # 创建全1的Tensor,ones(*sizes)

  • 直接根据数据创建:
         x = torch.tensor([5.5, 3])     #  小写t,与第一种情况不同
  • torch.arange(s,e,step)        #[s, e),步长为step创建Tensor

获得Tensor的形状

 设x是一个Tensor,获得x的形状

  • x.size()
  • x.shape

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值