自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(48)
  • 收藏
  • 关注

原创 lesson05-手写数据问题案例实战(理论+代码)

PyTorch手写数据问题案例实战(理论+代码),详细代码案列展示,详细注释分析!持续更新中。。。。。。。

2025-06-11 16:54:07 563 1

原创 lesson04-简单回归案例实战(理论+代码)

PyTorch简单线性回归(理论+代码实战),详细代码案列展示,详细注释分析!持续更新中。。。。。。。

2025-05-29 16:13:41 888 2

原创 lesson03-简单回归案例(理论+代码)

PyTorch简单线性回归(理论+代码实战),详细代码案列展示,详细注释分析!持续更新中。。。。。。。

2025-05-16 16:54:36 312 1

原创 Git/GitLab日常使用的命令指南来了!

日常实用的git/gitlab命令,实战操作大全!

2025-05-15 15:25:44 938 1

原创 lesson02-PyTorch开发环境安装

PyTorch开发环境安装(理论+代码实战),详细代码案列展示,详细注释分析!持续更新中。。。。。。。

2025-05-15 09:23:41 663 1

原创 lesson01-PyTorch初见(理论+代码实战)

PyTorch初见(理论+代码实战),详细代码案列展示,详细注释分析!持续更新中。。。。。。。

2025-05-14 15:23:57 1103 1

原创 微信小程序华为系列手机不支持缩放operateCamera:fail: zoom multiple not support!解决此问题

华为系列之前没有问题可以设置放大倍数,但是今天就突然设置不了,是为什么,报"operateCamera:fail: zoom multiple not support!试着将缩放倍数放大到原来倍数的十倍!

2024-06-21 15:45:14 397

原创 当Pycharm中右键运行python程序时出现Run ‘pytest in tests ***py‘,如何解决?

当Pycharm中右键运行python程序时出现Run 'pytest in tests ***py',如何解决?

2024-04-03 11:11:12 1012

原创 不需充会员,一招解决百度网盘下载速度!

还在为网盘传输速度发愁吗,又舍不得花钱充会员的看过来吧!三步免费教你完成传输速度的提升。

2023-04-17 14:25:03 7575 4

原创 python 出现报错 pm2 �����ڲ����ⲿ���Ҳ���ǿ����еij��� ���������ļ���

python 出现报错 pm2 �����ڲ����ⲿ���Ҳ���ǿ����еij��� ���������ļ���

2022-06-13 09:05:29 2406

原创 day25 torch.nn 操作2 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

可以看出,modules()返回的iterator不止包含子模块。这是和childern()的不同。NOTE:重复的模块只被返回一次(children()也是)。

2022-02-07 10:00:14 1620

原创 day24 torch.nn 操作1 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.nn :神经网络相关模块。持续更新

2022-01-23 22:23:29 1859

原创 day24 Storage 操作1 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

一个 torch.Storage 是一个单一数据类型的连续一维数组。每个 torch.Tensor 都有一个对应的、相同数据类型的存储。byte():将此存储转为 byte 类型char():将此存储转为 char 类型clone():返回此存储的一个副本

2022-01-22 22:10:34 1424

原创 day23 Tensor 操作5 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

storage_offset() –>int 以储存元素的个数的形式返回 tensor 在内存中的偏移量。type(new_type=None, async=False) 将对象投为指定的类型。view(*args) –>Tensor 返回一个有相同数据但大小不同的 tensor。

2022-01-21 22:19:33 1586

原创 day22 Tensor 操作4 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

index_copy_(dim, index, tensor),按参数index中的索引数确定的顺序,将原tensor用参数填充。rrow(dimension, start, length),permute(dims) 将 tensor 的维度换位。repeat(sizes) 沿着指定的维度重复 tensor。resize_(*sizes) 将 tensor 的大小调整为指定的大小。scatter_(input, dim, index, src)

2022-01-20 23:31:55 1239

原创 day21 Tensor 操作3 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

expand(*sizes) 返回 tensor 的一个新视图,单个维度扩大为更大的尺寸。tensor 也可以扩大为更高维,新增加的维度将附在前面。扩大 tensor 不需要分配新内存,只是仅仅新建一个tensor的视图,其中通过将stride设为0,一维将会扩展位更高维。任何一个一维的在不分配新内存的情况下可扩展任意的数值。index_add_(dim, index, tensor) –>Tensor 按参数 index 中的索引数确定的顺序,将参数 tensor 中的元素加到原来的 tensor 中。

2022-01-18 17:27:41 1269

原创 day20 Tensor 操作2 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

Tensor 操作

2022-01-17 22:09:46 1251

原创 day19 Tensor 操作1 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.Tensor 是一种包含单一数据类型元素的多维矩阵。Torch 定义了七种 CPU tensor类型和八种 GPU tensor 类型

2022-01-16 21:29:45 1088

原创 day18 BLAS/LAPACK 操作4 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.svd(input, some=True, out=None),torch.symeig(input, eigenvectors=False, upper=True, out=None) ,torch.trtrs()

2022-01-14 14:07:48 1036 2

原创 day17 BLAS/LAPACK 操作3 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.geqrf(input, out=None),torch.ger(vec1, vec2, out=None),torch.gesv(B, A, out=None),torch.inverse(input, out=None),torch.mm(mat1, mat2, out=None),torch.mv(mat, vec, out=None),torch.qr(input, out=None) -> (Tensor, Tensor)

2022-01-13 14:26:38 1021

原创 day16 BLAS/LAPACK 操作2 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.baddbmm(beta=1, mat, alpha=1, batch1, batch2, out=None),torch.bmm(batch1, batch2, out=None),torch.btrifact(A, info=None) -->Tensor,torch.btrisolve(b, LU_data, LU_pivots) ,torch.dot(tensor1, tensor2) -->float,torch.eig(a, eigenvectors=False, out=None)

2022-01-11 21:50:12 1310

原创 day15 BLAS/LAPACK 操作1 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.addbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) ,torch.addmm(beta=1, mat, alpha=1, mat1, mat2, out=None),torch.addmv(beta=1, tensor, alpha=1, mat, vec, out=None),torch.addr(beta=1, mat, alpha=1, vec1, vec2, out=None)

2022-01-10 11:20:41 1136

原创 day14 其他操作 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.cross(input, other, dim=-1, out=None),torch.diag(input, diagonal=0, out=None),torch.histc(input, bins=100, min=0, max=0, out=None),torch.renorm(input, p, dim, maxnorm, out=None),torch.trace(input) -->float,torch.tril(input, k=0, out=None),torch.triu(

2022-01-09 19:50:28 907

原创 Neo4j常用命令大全(知识图谱) 增、删、改、查 一篇足矣

创建任务节点,创建多个节点,创建地区节点,创建关系,建立更多关系,建立人物和地区之间的关系,插入数据已经完成,现在就开始查询,8.查询所有对外有关系的节点,以及关系类型 ,创建节点的时候就建好关系,增加修改节点的属性,查询指定数理插入的数据,查询库种所有有关系的数量

2022-01-09 19:05:07 13120 4

原创 day13 累积操作4 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.min(input, dim, min=None, min_indices=None),torch.min(input, other, out=None),torch.ne(input, other, out=None),torch.sort(input, dim=None, descending=False, out=None),torch.topk(input, k, dim=None, largest=True, sorted=True, out=None)

2022-01-08 11:03:56 1030

原创 day12 累积操作3 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.eq(input, other, out=None),torch.equal(tensor1, tensor2) -->bool,torch.ge(input, other, out=None),torch.gt(input, other, out=None),torch.kthvalue(input, k, dim=None, out=None,torch.le(input, other, out=None) ,torch.max(input, dim, max=None, max_indic

2022-01-07 11:48:20 1044

原创 day11 累积操作2 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.norm(input, p, dim, out=None),torch.prod(input) -->float ,torch.prod(input, dim, out=None),torch.std(input) -->float,torch.std(input, dim, out=None),torch.sum(input) -->float,torch.sum(input, dim, out=None),torch.var(input) -->float,torch.var(input,

2022-01-06 15:16:51 1318

原创 day10 累积操作 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.cumprod(input, dim, out=None),torch.cumsum(input, dim, out=None),torch.dist(input, other, p=2, out=None),torch.mean(input) ,torch.mean(input, dim, out=None),torch.median(input, dim=-1, values=None, indices=None)

2022-01-05 11:04:12 689

原创 day9 数学操作 按点操作 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.sigmoid(input, out=None) ,torch.sign(input, out=None) ,torch.sin(input, out=None),torch.sinh(input, out=None),torch.sqrt(input, out=None),torch.tan(input, out=None),torch.tanh(input, out=None),torch.trunc(input, out=None)

2022-01-04 21:12:55 1439

原创 day8 数学操作 按点操作 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.frac(tensor, out=None),torch.lerp(start, end, weight, out=None),torch.log(input, out=None),torch.log1p(input, out=None),torch.mul(input, value, out=None),torch.mul(input, other, out=None),torch.neg(input, out=None) ,torch.pow(input, exponent, out=Non

2022-01-03 08:53:59 587

原创 day7 数学操作 按点操作 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.atan(input, out=None) torch.atan2(input1, input2, out=None) torch.clamp(input, min, max, out=None) torch.clamp(input, *, min, out=None) torch.cos(input, out=None)

2022-01-02 18:38:05 702

原创 day6 数学操作 按点操作 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.add(input, value, out=None),torch.add(input, value=1, other, out=None),torch.addcdiv(tensor, value=1, tensor1, tensor2, out=None) -->Tensor,torch.addcmul(tensor, value=1, tensor1, tensor2, out=None) -->Tensor

2021-12-31 18:01:37 679

原创 day5 序列化 并行化 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

torch.save()torch.load()orch.get_num_threads() -->inttorch.set_num_threads(int)

2021-12-30 19:42:29 1194

原创 day4 随机抽样 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

day4 随机抽样 入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

2021-12-29 20:13:11 848

原创 Seq2Seq,Seq2Seq模型使用技巧

Seq2Seq是一种循环神经网络的变种,包括编码器(Encoder)和解码器(Decoder)两部分组成。Seq2Seq是自然语言处理中的一种重要模型,可以用于机器翻译、对话系统、自动摘要。首先介绍RNN结构与使用RNN 基本的模型如上图所示,每个神经元接受的输入包括:前一个神经元的隐藏层状态h(用于记忆)和当前的输入x(当前信息)。神经元得到输入之后,会计算出新的隐藏状态h和输出y,然后在传递到下一个神经元。因为隐藏状态h的存在,所以RNN具有一定的记忆功能。针对不同任务,通常要对 RNN

2021-12-29 18:05:58 875

原创 day3 索引,切片,连接,换位入门 一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

索引,切片,连接,换位torch.cat(inputs, dimension=0) -->Tensor 在给定维度上对输入的张量序列进行连接操作。torch.cat()可以看做torch.split()和torch.chunk()的反操作。cat()函数可以通过下面例子更好的理解。参数: --inputs(sequence of Tensors):可以是任意相同Tensor类型的python序列 --dimension(int,optional):沿着此维连...

2021-12-28 14:32:28 388

原创 day2 创建操作一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

day2 创建操作一起学 PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持

2021-12-27 09:39:34 860

原创 一起学PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持day1

一起学PyTorch吧,PyTorch从入门开始 每天都更新 超详细 参数 常用方法 简单案列 共同学习,共同进步 坚持day1

2021-12-25 09:48:57 1000

原创 简单容易理解的迁移学习(TrAdaBoost),附带迁移学习的原论文

简单容易理解的迁移学习(TrAdaBoost),附带迁移学习的原论文

2021-12-24 20:17:56 4277

原创 一图带你了解爬虫 简单爬虫,爬取各种图片,CNN的天堂,附带代码

一图带你了解爬虫 简单爬虫,爬取各种图片,CNN的天堂,附带代码

2021-12-24 09:24:22 2247 4

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除