lesson01-PyTorch初见(理论+代码实战)

一、初识PyTorch

二、同类框架

PyTorchVSTensorFlow

三、参数 对比

四、PyTorch生态 

四、常用的网络层 

五、代码分析 

import torch
from torch import autograd

x = torch.tensor(1.)
a = torch.tensor(1., requires_grad=True)
b = torch.tensor(2., requires_grad=True)
c = torch.tensor(3., requires_grad=True)

y = a**2 * x + b * x + c
  • x 是一个标量,值为 1.0,不需要梯度。
  • abc 都是需要梯度的标量。
  • 函数 y 定义为:
    y=a2⋅x+b⋅x+cy=a2⋅x+b⋅x+c

代入当前值:

  • a=1
  • b=2
  • c=3
  • x=1

所以:

y=12⋅1+2⋅1+3=1+2+3=6y=12⋅1+2⋅1+3=1+2+3=6

梯度计算部分:

print('before:', a.grad, b.grad, c.grad) 
grads = autograd.grad(y, [a, b, c]) 
print('after :', grads[0], grads[1], grads[2])
初始梯度状态(before):

由于还没有进行反向传播,所有 .grad 属性都是 None

输出会是:

before: None None None

计算梯度(autograd.grad):

我们对函数 y=a2⋅x+b⋅x+cy=a2⋅x+b⋅x+c 分别对 a, b, c 求导:

  • ∂a/∂y​=2a⋅x=2⋅1⋅1=2
  • ∂y/∂b=x=1
  • ∂y/∂c=1

所以梯度应该是:

  • grads[0] = 2
  • grads[1] = 1
  • grads[2] = 1

最终输出示例:

before: None None None
after : tensor(2.) tensor(1.) tensor(1.)
  • 这段代码演示了如何使用 torch.autograd.grad 来手动计算多个变量对某个标量输出的梯度。

代码案例二

import 	torch
import  time
print(torch.__version__)
print(torch.cuda.is_available())
# print('hello, world.')

a = torch.randn(10000, 1000)
b = torch.randn(1000, 2000)

t0 = time.time()
c = torch.matmul(a, b)
t1 = time.time()
print(a.device, t1 - t0, c.norm(2))

device = torch.device('cuda')
a = a.to(device)
b = b.to(device)

t0 = time.time()
c = torch.matmul(a, b)
t2 = time.time()
print(a.device, t2 - t0, c.norm(2))

t0 = time.time()
c = torch.matmul(a, b)
t2 = time.time()
print(a.device, t2 - t0, c.norm(2))

 代码解析

1. 导入模块与基本信息打印

import torch
import time

print(torch.__version__)
print(torch.cuda.is_available())
  • torch.__version__:输出当前安装的 PyTorch 版本。
  • torch.cuda.is_available():判断当前是否可用 CUDA(即是否有支持的 GPU)。
示例输出:
2.4.0
True

 2. 定义两个大张量用于矩阵乘法

a = torch.randn(10000, 1000)
b = torch.randn(1000, 2000)
  • a 是一个形状为 (10000, 1000) 的随机张量(正态分布)。
  • b 是一个形状为 (1000, 2000) 的随机张量。
  • 矩阵乘法后,结果 c 的形状将是 (10000, 2000)

3. 在 CPU 上进行矩阵乘法并计时

t0 = time.time()
c = torch.matmul(a, b)
t1 = time.time()
print(a.device, t1 - t0, c.norm(2))
  • 使用 torch.matmul(a, b) 计算矩阵乘法。
  • a.device 显示设备信息,默认是 'cpu'
  • t1 - t0 是计算时间差(单位秒)。
  • c.norm(2) 是为了防止编译器优化掉无输出的运算,同时验证结果的一致性。

 4. 将张量移到 GPU 上

device = torch.device('cuda')
a = a.to(device)
b = b.to(device)

5. 第一次在 GPU 上进行矩阵乘法并计时

t0 = time.time()
c = torch.matmul(a, b)
t2 = time.time()
print(a.device, t2 - t0, c.norm(2))
  • 这里会受到 GPU 初始化开销 和 CUDA 内核启动延迟 的影响,第一次运行通常较慢。

6. 第二次在 GPU 上进行矩阵乘法并计时

t0 = time.time()
c = torch.matmul(a, b)
t2 = time.time()
print(a.device, t2 - t0, c.norm(2))
  • 第二次运行没有初始化开销,更能反映真实性能。

预期输出示例(假设你有 GPU)

2.4.0
True
cpu 0.123456 tensor(7070.5678)
cuda:0 0.201234 tensor(7070.5678, device='cuda:0')
cuda:0 0.012345 tensor(7070.5678, device='cuda:0')

✅ 总结分析

操作设备时间 (秒)备注
第一次 matmulCPU~0.12s常规速度
第一次 GPU matmulGPU~0.20s包含初始化和首次调用延迟
第二次 GPU matmulGPU~0.01s实际 GPU 加速效果

🔍 补充说明

  • 为什么第一次 GPU 运行比 CPU 还慢?
    • 因为第一次调用涉及 CUDA 内核启动、内存拷贝、上下文初始化等额外开销
  • 第二次 GPU 调用很快:是因为这些准备工作已经完成,真正体现了 GPU 并行计算的优势。
  • norm(2):用来确保张量被实际计算,避免因“未使用”而被优化掉。

🛠️ 优化建议

如果你要准确测试 GPU 的性能,可以:

  1. 预热(Warm-up):先做几次空跑。

for _ in range(5):
    _ = torch.matmul(a, b)
torch.cuda.synchronize()  # 同步等待完成

         使用 torch.cuda.Event 来更精确计时

start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)

start.record()
c = torch.matmul(a, b)
end.record()
torch.cuda.synchronize()
print(start.elapsed_time(end))  # 单位是毫秒

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值