自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 随机森林分类中的特征重要性排序与广义估计方程(GEE)分析

通过这些步骤,我们可以使用随机森林分类器来获取特征的重要性排序,并结合GEE分析来研究特征与目标变量之间的关系。在这个例子中,我们将使用make_classification函数生成一个具有1000个样本和20个特征的数据集。一旦我们训练好了随机森林分类器,我们可以使用feature_importances_属性来获取特征的重要性得分。一旦我们拟合了GEE模型,我们可以使用summary方法来获取模型的统计结果。现在,我们可以对特征重要性进行排序,并输出排名。然后,我们可以使用fit方法来拟合GEE模型。

2023-09-23 04:07:43 286

原创 使用Google Earth Engine Python导出GeoTIFF文件

然后,我们设置了导出参数,包括导出文件的描述、分辨率、ROI和文件格式(这里我们选择了GeoTIFF)。Google Earth Engine(GEE)是一个强大的平台,提供了丰富的遥感数据和分析工具,用于进行地球观测数据的可视化和分析。通过设置适当的导出参数,你可以选择感兴趣的区域、分辨率和文件格式,以满足你的需求。一旦任务启动,你可以在Google Earth Engine的任务面板中查看任务的状态。需要注意的是,导出任务的完成时间取决于图像的大小和复杂度。函数发起了导出任务。

2023-09-22 17:19:10 430

原创 计算和下载增强型植被指数(Enhanced Vegetation Index, EVI)和绿度植被指数(Normalized Difference Vegeta

在上述代码中,我们使用Landsat 8影像的近红外波段(Band 5)、红光波段(Band 4)和蓝光波段(Band 2)来计算EVI指数,并将结果重命名为’EVI’。在上述代码中,我们使用Landsat 8影像的近红外波段(Band 5)和红光波段(Band 4)来计算NDVI指数,并将结果重命名为’NDVI’。通过以上代码,我们可以将计算得到的EVI和NDVI结果数据导出为GeoTIFF格式,并保存到Google Drive的指定目录中。在GEE的代码编辑器中,导入需要处理的遥感影像数据。

2023-09-22 14:51:45 674

原创 使用Google Earth Engine进行Sentinel-2数据的可视化滑块制作

在这篇文章中,我们使用Google Earth Engine和JavaScript编程语言制作了一个简单的可视化滑块,以展示Sentinel-2卫星数据。我们通过导入必要的库和数据集,定义区域和时间范围,筛选图像,选择波段,并将图像添加到地图上。然后,我们创建了一个滑块来调整图像的可视化参数,并实时观察图像的变化。通过以上代码,我们成功创建了一个简单的滑块,可以通过拖动滑块来调整图像的可视化参数。通过滑块的拖动,我们可以实时观察到图像的变化。然后,我们可以将图像数据集转换为可视化图层,并将其添加到地图中。

2023-09-22 00:14:48 542

原创 Google Earth Engine与MODIS的关系

同时,GEE还支持多种编程语言(如JavaScript和Python),使得用户可以根据自己的需求进行定制化的开发和应用。Google Earth Engine(GEE)是一个强大的云平台,提供了丰富的地理空间数据和分析工具,用于进行地球观测和环境监测。总结而言,Google Earth Engine与MODIS密切相关,GEE平台提供了对MODIS数据的广泛支持和访问,并通过其强大的分析能力为用户提供了一个便捷的数据处理和研究平台。函数对数据集进行空间和时间的筛选,以获取特定区域和时间范围内的数据。

2023-09-21 20:55:28 376

原创 使用 Google Earth Engine 进行 Python 气候分析和预测

通过利用 GEE 提供的丰富数据集和强大的分析工具,我们可以更好地理解气候变化和进行气候预测。Google Earth Engine(GEE)是一个强大的云端地理数据分析平台,它提供了丰富的遥感数据集和分析工具,可以用于进行气候分析和预测。在本文中,我们将介绍如何使用 Python 和 GEE 进行气候分析,并展示一些示例代码。我们可以使用历史气候数据来训练模型,并使用训练好的模型进行未来气候的预测。我们可以使用这些数据集来进行气候分析。一旦我们获取了气候数据并进行了可视化,我们可以进行各种气候分析。

2023-09-21 10:08:41 588

原创 Google Earth Engine中的Landsat TOA/SR/RT/T1/T数据集

Google Earth Engine(简称GEE)是一个强大的云平台,提供了丰富的遥感数据集和分析工具,用于地球观测和环境监测。其中,Landsat系列数据是GEE中最为常用和广泛应用的遥感数据之一。本文将介绍Landsat TOA/SR/RT/T1/T数据集的不同版本,并提供相应的源代码示例。以上是对Google Earth Engine中Landsat TOA/SR/RT/T1/T数据集的不同版本的简要介绍,并提供了相应的代码示例。

2023-09-21 03:23:24 814

原创 Google Earth Engine 简明教程:探索地球数据与编程

Google Earth Engine(GEE)是一个强大的云计算平台,为用户提供了访问和分析来自全球范围内的卫星影像和地理空间数据的能力。通过结合遥感数据、地理信息系统(GIS)和编程技能,GEE为研究人员、学生和开发者们提供了一个强大的工具,用于监测地表变化、研究环境问题以及构建地理空间应用程序。通过加载和可视化数据、执行数据分析和计算,以及结果的可视化和导出,您可以利用GEE进行地球数据的探索和研究。然后,您可以在网站上访问GEE JavaScript代码编辑器,开始编写和执行您的代码。

2023-09-20 17:58:55 827

原创 使用Google Earth Engine的ee.Reducer.intervalMean函数计算不含异常值的异常值,并去除2%的异常值

在GEE中,可以使用ee.Reducer.intervalMean函数来计算不含异常值的异常值,并且还可以去除一定百分比的异常值。至此,我们已经介绍了如何使用GEE的ee.Reducer.intervalMean函数计算不含异常值的异常值,并且去除了一定百分比的异常值。在导入数据后,我们可以使用ee.Reducer.intervalMean函数来计算不含异常值的异常值。希望这篇文章能够帮助你了解如何使用GEE计算不含异常值的异常值,并去除一定百分比的异常值。的属性,其中包含像元的异常值。

2023-09-20 13:56:11 520 1

原创 Google Earth Engine:使用geemap进行地理数据分析和可视化

通过结合Google的大规模计算能力和地理空间数据集,用户可以进行广泛的地理数据分析和可视化,从而洞察地球上的各种现象和变化。geemap是一个基于Google Earth Engine的Python库,它提供了简单易用的工具,帮助用户在Jupyter Notebook中进行地理数据分析和可视化。当然,geemap还提供了更多高级功能和工具,方便用户进行更复杂的地理数据分析和可视化。geemap提供了强大的地理数据分析功能,可以进行各种地理空间操作和计算。使用geemap进行地理数据分析和可视化非常简单。

2023-09-20 09:43:17 662 1

原创 使用Google Earth Engine进行影像处理和协方差矩阵计算

函数用于计算协方差矩阵,帮助我们理解影像中的空间和光谱变化。通过结合这两个函数,我们可以在Google Earth Engine平台上进行影像处理和协方差矩阵计算,进而深入分析遥感数据的特征和变化。协方差矩阵是描述不同波段之间相关性的重要工具,它可以帮助我们理解影像中的空间和光谱变化。函数可以将多波段影像转换为像素值数组,方便后续的矩阵计算和统计分析。在上述代码中,我们首先选择了一幅多波段影像,并将其存储在变量。在上述代码中,我们首先选择了一个图像集合,并将其存储在变量。函数打印出协方差矩阵。

2023-09-20 04:05:49 547 1

原创 使用Google Earth Engine Python识别火灾前后的结果

Google Earth Engine(GEE)作为一个强大的云计算平台,提供了丰富的遥感数据和分析工具,可以用于火灾监测和研究。首先,我们需要定义一个区域(region of interest,ROI),用于指定我们感兴趣的地理范围。首先,我们需要定义一个区域(region of interest,ROI),用于指定我们感兴趣的地理范围。在这里,我们可以设置一个阈值,当NDVI的变化超过该阈值时,我们认为火灾发生了。在这里,我们可以设置一个阈值,当NDVI的变化超过该阈值时,我们认为火灾发生了。

2023-09-20 01:09:43 542 1

原创 南非国家土地覆盖的地理环境分析及数据可视化

南非国家土地覆盖的地理环境分析和数据可视化是了解南非地理特征、资源利用和城市化进程的重要手段。为了更直观地展示南非国家土地覆盖的情况,可以利用数据可视化的方法,例如使用Python编程语言中的Matplotlib库进行地理数据的可视化处理。通过上述代码,可以根据提供的土地覆盖数据生成一个饼图,直观展示南非国家土地覆盖情况的比例关系。南非作为非洲大陆的一个重要国家,其土地覆盖的情况对于国家的发展和资源管理具有重要意义。草地适宜草类和灌木的生长,为南非的畜牧业提供了重要的放牧资源。

2023-09-19 20:51:36 576

原创 Google Earth Engine 全球建筑物矢量数据集合下载及使用示例

总结起来,Google Earth Engine的全球建筑物矢量数据集(GlobalMLBuildingFootprints)是一个有价值的资源,可以用于各种地理空间分析和应用。通过使用Google Earth Engine和Google Drive API,你可以方便地下载和使用这个数据集,并进行自定义的数据处理和分析。一旦你将数据集导出到Google Drive中,你可以将其下载到本地计算机并在任何支持矢量数据的GIS软件中使用。替换为你的Google Drive API凭据文件的路径,并将。

2023-09-19 18:31:32 832

原创 使用Google Earth Engine(GEE)对图像进行筛选和降维到图像

在Google Earth Engine(GEE)平台上,我们可以利用强大的功能和大量的遥感数据来进行图像处理和分析。其中一个常见的任务是从大规模图像数据集中筛选出感兴趣的图像,并将其降维为单个图像。本文将介绍如何使用GEE的reduce方法和toBands函数来实现这一目标。首先,我们需要定义一个区域(region of interest),以便在给定的区域内进行图像筛选。在GEE中,可以使用几何对象(Geometry)来表示区域。下面是一个示例的几何对象,表示一个矩形区域:其中,xmin、ymin、x

2023-09-19 13:02:02 547

原创 Google Earth Engine 时间序列分析案例分析

GEE提供了丰富的功能和数据集,可以支持更复杂的时间序列分析和其他地理空间数据分析任务,因此读者可以根据自己的需求进一步探索和扩展。通过上述步骤,我们可以使用GEE进行时间序列分析,从而了解地表植被的变化趋势。这个案例只是时间序列分析在GEE中的一个简单示例,实际应用中还可以根据具体需求进行更复杂的分析和探索。获取到MODIS NDVI数据集后,我们需要对数据进行预处理,以便后续的时间序列分析。最后,我们可以将时间序列分析的结果可视化,以便更好地理解植被的变化趋势。步骤三:时间序列分析。

2023-09-19 06:04:15 568

原创 使用Google Earth Engine计算和展示某区域的年降水量直方图

综上所述,我们使用Google Earth Engine成功计算了某个区域的年降水量,并生成了相应的直方图。这个过程中,我们选择了一个特定的区域,加载了适当的降水数据集,计算了年降水量,并最终生成了直方图。在本文中,我们将使用GEE来计算某个区域的年降水量,并展示其直方图。首先,我们需要在GEE中指定我们感兴趣的区域。一旦我们加载了降水数据集,我们就可以开始计算某个区域的年降水量了。最后,我们将使用GEE的图像绘制工具来生成年降水量的直方图。通过运行上述代码,我们将在GEE的控制台中得到年降水量的直方图。

2023-09-18 21:44:53 570

原创 使用Google Earth Engine从数字高程模型计算坡度和坡向(Python GEE)

在上面的代码中,我们使用ee.batch.Export.image.toDrive()函数定义了导出参数,并使用task.start()函数开始导出任务。此外,如果您希望将计算结果导出为其他格式(例如GeoTIFF),可以使用ee.batch.Export.image()函数执行导出操作。在上面的代码中,我们使用ee.Terrain.slope()函数计算了坡度,使用ee.Terrain.aspect()函数计算了坡向。在GEE中,我们可以使用ee.Terrain()模块提供的函数来执行这些计算。

2023-09-18 18:48:00 872

原创 Google Earth Engine geemap:筛选和获取影像集合属性信息

geemap是Google Earth Engine的Python包,提供了一系列简单易用的工具,用于在Jupyter Notebook中进行地理空间数据分析和可视化。本文将介绍如何使用geemap库筛选和获取Google Earth Engine中的影像集合属性信息。通过上述代码,我们可以使用geemap库在Google Earth Engine中筛选和获取影像集合的属性信息,并将其可视化在地图上。最后,我们可以在地图上可视化搜索到的影像集合。如果我们想获取更多的属性信息,可以使用。

2023-09-18 16:20:03 503

原创 Google Earth Engine中主要的监督分类方法介绍

监督分类是遥感图像处理中常用的技术之一,它可以将遥感图像中的像素分为不同的类别,如植被、水体、建筑等。在GEE中,我们可以使用ee.Classifier.svm()函数来创建一个SVM分类器,然后使用该分类器对遥感图像进行分类。最大似然分类是一种基于统计模型的监督分类方法,它假设每个类别的像素值服从特定的概率分布。以上是GEE中常用的几种监督分类方法的介绍,并提供了相应的源代码示例。在实际应用中,可以根据具体的需求选择适合的分类方法,并根据实际数据进行参数调整和模型训练,以获得准确的分类结果。

2023-09-18 09:45:21 694

原创 Google Earth Engine 是一个强大的云平台,用于进行地理空间数据分析和可视化

Google Earth Engine 是一个强大的云平台,用于进行地理空间数据分析和可视化。在 Google Earth Engine 中,您可以创建图表来展示和解释地理数据。图表可以是折线图、柱状图、散点图等,可以帮助您更好地理解数据的趋势和关系。接下来,我们创建一个数据表格,并将其传递给。在这个示例中,我们首先创建了一个包含示例数据的特征集合。您可以根据需要修改示例代码,以适应您的数据和注释要求。类型和设置不同的选项,您可以创建各种类型的图表,并根据需要添加注释。最后,我们创建一个注释标签,并使用。

2023-09-18 00:17:24 508

原创 使用Google Earth Engine按照影像编号进行影像筛选

通过以上步骤,我们就可以在Google Earth Engine中按照影像编号进行影像筛选。根据实际情况,你可以根据自己的需求修改代码中的影像编号属性名称、影像数据集ID以及要筛选的影像编号数组,以实现你自己的影像筛选需求。本文将介绍如何在GEE中按照影像编号进行影像筛选的方法,并提供相应的源代码示例。接下来,我们可以定义一个函数,用于按照影像编号进行筛选。假设我们有一组影像,每个影像都有一个编号属性(例如,影像ID)。函数,并将影像数据集和要筛选的影像编号作为参数传递给它,将返回的结果赋值给。

2023-09-17 23:17:09 522 1

原创 使用Python进行光谱像元分解:unmix函数详解

在函数内部,我们首先初始化一个大小为(num_endmembers, num_pixels)的零矩阵"abundances",用于存储像元的贡献。在光谱分析中,光谱像元分解是一种常见的技术,用于将复合的光谱信号分解成不同成分的贡献。其中一个常用的函数是"unmix",它可以帮助我们实现光谱像元分解的过程。在示例代码的后半部分,我们定义了一个示例数据集,并调用了"unmix"函数进行光谱像元分解。在本文中,我们将详细介绍如何使用"unmix"函数进行光谱像元分解,并提供相应的源代码示例。

2023-09-17 22:11:25 807 1

原创 重庆地区的NDVI时序分析折线图案例分析

通过这样的分析,我们可以深入了解重庆地区的植被生长情况,并对其进行监测和评估。利用GEE强大的遥感数据处理和分析能力,我们可以在更大范围和更长时间跨度上进行NDVI时序分析,以获得更全面的植被动态信息。在本文中,我们将使用Google Earth Engine(GEE)平台进行重庆地区的NDVI时序分析,并生成相应的折线图。接下来,我们将进行时序分析并生成折线图。我们将计算重庆地区每年的平均NDVI,并以年份为横坐标,NDVI值为纵坐标绘制折线图。函数设置图表的标题、横坐标和纵坐标的标题,以及折线的样式。

2023-09-17 21:44:09 574 1

原创 基于Google Earth Engine的不同决策树数量分类精度对比分析

其中,决策树分类是GEE中常用的遥感影像分类方法之一。本文将探讨不同决策树数量对分类精度的影响,并提供相应的源代码。本文介绍了使用Google Earth Engine进行不同决策树数量分类精度对比分析的方法。通过提供相应的源代码示例,读者可以在GEE平台上实践并探索其他遥感影像分类相关的问题。通过对不同决策树数量进行分类精度对比分析,我们可以得出不同数量决策树的分类精度表现。根据实际数据集和分类任务的不同,最佳的决策树数量可能会有所不同。参数代表决策树的数量,你可以根据实际需求进行调整。

2023-09-17 17:01:40 640 1

原创 地球引擎保姆级教程:美国农田植被分类案例分析

地球引擎(Google Earth Engine,简称GEE)是一个强大的云平台,提供了用于大规模地理空间数据分析和处理的工具和资源。本文将通过一个案例分析,演示如何利用GEE进行美国农田植被分类。下面将详细介绍具体步骤和相应的源代码。至此,我们完成了利用GEE进行美国农田植被分类的案例分析。通过以上步骤,我们可以获取高质量的遥感图像数据,并利用GEE提供的强大功能进行预处理、特征提取和植被分类。这为农业监测、土地利用规划等应用提供了有力的支持。希望本文对你理解如何利用GEE进行农田植被分类有所帮助!

2023-09-17 04:34:17 497 1

原创 将复杂多样的分类结果导出至Google云端硬盘的GEE教程

为了解决这个问题,我们可以将复杂多样的分类结果导出到Google云端硬盘(Google Cloud Storage)上,以便更有效地管理和共享数据。在上述代码中,我们首先加载了Landsat影像,然后定义了一个分类器,并使用训练数据对影像进行分类。接下来,我们指定了导出参数,包括分类结果、导出文件的描述、像素分辨率、导出区域以及导出到Google云端硬盘上的文件夹。如果任务尚未完成,我们将打印一条相应的消息。然后,我们检查任务是否已完成,如果已完成,我们可以使用。在上述代码中,我们首先使用。

2023-09-16 22:13:05 654 1

原创 使用 Google Earth Engine(GEE)的 reducer 对数组进行获取和分析

总结起来,本文介绍了如何使用 Google Earth Engine(GEE)中的 reducer 对数组进行获取和分析。我们通过一个示例演示了如何获取图像中每个像素的平均值,同时提供了其他常用的 reducer。本文将介绍如何使用 GEE 中的 reducer 对数组进行获取和分析,并提供相应的源代码示例。在 GEE 中,我们可以使用 reducer 来处理图像、图层和特定区域的像素值数组。然后,我们指定了图像的几何形状和比例尺参数,以确保 reducer 在正确的空间范围内进行计算。

2023-09-16 20:28:44 520 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除