随机森林是一种常用的机器学习算法,可用于分类和回归问题。它通过组合多个决策树的预测结果来进行预测,并且能够估计特征的重要性。而广义估计方程(Generalized Estimating Equations,GEE)是一种用于处理相关数据的统计方法。本文将介绍如何使用随机森林分类来进行特征重要性排序,并结合GEE分析。我们将提供相应的源代码,以便读者可以进行实际操作。
首先,我们需要导入所需的Python库。在这个例子中,我们将使用scikit-learn库来构建随机森林分类器和计算特征重要性。我们还将使用statsmodels库来进行GEE分析。
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.