数据集概述
- 对于多类别图片数据集采集,在采集完成之后,采集设备可能是不同的手机或者摄像头,因此获取的最后图片数据集尺寸大小,分辨率可能差异性很大,对之后的模型训练有很大的影响;因此我们需要将数据集中的图片,重新处理至同一分辨率和大小。
- 如果处理完成数据集数量还不满足要求,在数量差异较小的时候可以通过图片扩增的手段增加数据集。
常用图像扩增所采用的变换
- 一定程度内的随机旋转、平移、缩放、裁剪、填充、左右翻转;
- 对图像中的像素添加噪声扰动。常见的有椒盐噪声、高斯白噪声;
- 颜色变换。在图像的RGB颜色空间上添加增量;
- 改变图片的亮度、清晰度、对比度、锐度等;
- 除此之外,还有采样算法SMTE,生成对抗网络GAN等都可以进行图像扩充;
------声明:摘选自《百面机器学习》,不错的书,推荐------
代码
Python >= 3.6,Opencv2
- 尺寸一致:
将指定文件夹下的所有图片resize至同一尺寸,并保存在指定文件夹下
# -*-coding = utf-8 -*-
"""
流程:
1.读取指定文件夹所有文件(必须都是图片)
2.进行resize,并存储在指定文件夹下
修改值:
path_read: 需要进行修改的图片存储的文件夹
path_write: 修改后的图片存储的文件夹,必须为空,会对图片重新编号00000-09999
target_size:[x, y] 修改后文件的尺寸
"""
import os
import cv2
if __name__ == "__main__":
path_read = "D:/pic_old/"
path_write = "D:/pic_new/"
target_size = [512, 512]
image_list = [x for x in os.listdir(path_read)]
for num, img in enumerate(image_list):
print(num, img)
image = cv2.imread(path_read+img, cv2.IMREAD_COLOR)
# print(path_read+"/"+img)
new_image = cv2.resize(image, (target_size[0], target_size[1]), interpolation=cv2.INTER_CUBIC)
image_dir = path_write+str(num).zfill(5)+'.jpg'
cv2.imwrite(image_dir, new_image)
- 图片变换:
流程:
(1)需要修改的参数:
path_read: 读取原始数据集图片的位置;
path_write: 图片扩增后存放的位置;
picture_size: 图片之后存储的尺寸;
enhance_hum: 需要通过扩增手段增加的图片数量
(2)扩增手段:
Image_flip:
#翻转图片;随机旋转翻转方向,垂直/水平/垂直+水平
Image_traslation:
#平移图片,随机选择平移方向,指定平移像素100(可以修改),抽取原始图片像素点填补平移后空白区域;
Image_rotate:
#旋转图片,随机从rotate_angle列表中抽取旋转角度
Image_noise:
#添加噪声,随机选择高斯噪声或椒盐噪声;且高斯噪声的方差与椒盐噪声的比例都是随机抽取;
# -*-coding = utf-8 -*-
"""
1. Image_flip:翻转图片
2. Image_traslation:平移图片
3. Image_rotate:旋转图片
4. Image_noise:添加噪声
"""
import os
import cv2
import numpy as np
from random import choice
import random
def Image_flip(img):
"""
:param img:原始图片矩阵
:return: 0-垂直; 1-水平; -1-垂直&水平
"""
if img is None:
return
paras = [0, 1, -1]
img_new = cv2.flip(img, choice(paras))
return img_new
def Image_traslation(img):
"""
:param img: 原始图片矩阵
:return: [1, 0, 100]-宽右移100像素; [0, 1, 100]-高下移100像素
"""
paras_wide = [[1, 0, 100], [1, 0, -100]]
paras_height = [[0, 1, 100], [0, 1, -100]]
rows, cols = img.shape[:2]
img_shift = np.float32