图像采集数据集整理和扩充方案(含代码)

数据集概述

  1. 对于多类别图片数据集采集,在采集完成之后,采集设备可能是不同的手机或者摄像头,因此获取的最后图片数据集尺寸大小,分辨率可能差异性很大,对之后的模型训练有很大的影响;因此我们需要将数据集中的图片,重新处理至同一分辨率和大小。
  2. 如果处理完成数据集数量还不满足要求,在数量差异较小的时候可以通过图片扩增的手段增加数据集。

常用图像扩增所采用的变换

  1. 一定程度内的随机旋转、平移、缩放、裁剪、填充、左右翻转;
  2. 对图像中的像素添加噪声扰动。常见的有椒盐噪声、高斯白噪声;
  3. 颜色变换。在图像的RGB颜色空间上添加增量;
  4. 改变图片的亮度、清晰度、对比度、锐度等;
  5. 除此之外,还有采样算法SMTE,生成对抗网络GAN等都可以进行图像扩充;
    ------声明:摘选自《百面机器学习》,不错的书,推荐------

代码

Python >= 3.6,Opencv2

  1. 尺寸一致:
    将指定文件夹下的所有图片resize至同一尺寸,并保存在指定文件夹下
# -*-coding = utf-8 -*-
"""
流程:
1.读取指定文件夹所有文件(必须都是图片)
2.进行resize,并存储在指定文件夹下
修改值:
path_read: 需要进行修改的图片存储的文件夹
path_write: 修改后的图片存储的文件夹,必须为空,会对图片重新编号00000-09999
target_size:[x, y] 修改后文件的尺寸
"""
import os
import cv2


if __name__ == "__main__":
    path_read = "D:/pic_old/"
    path_write = "D:/pic_new/"
    target_size = [512, 512]
    image_list = [x for x in os.listdir(path_read)]
    for num, img in enumerate(image_list):
        print(num, img)
        image = cv2.imread(path_read+img, cv2.IMREAD_COLOR)
        # print(path_read+"/"+img)
        new_image = cv2.resize(image, (target_size[0], target_size[1]), interpolation=cv2.INTER_CUBIC)
        image_dir = path_write+str(num).zfill(5)+'.jpg'
        cv2.imwrite(image_dir, new_image)
  1. 图片变换:
    流程:
    (1)需要修改的参数:
    path_read: 读取原始数据集图片的位置;
    path_write: 图片扩增后存放的位置;
    picture_size: 图片之后存储的尺寸;
    enhance_hum: 需要通过扩增手段增加的图片数量
    (2)扩增手段:
    Image_flip:
    #翻转图片;随机旋转翻转方向,垂直/水平/垂直+水平
    Image_traslation:
    #平移图片,随机选择平移方向,指定平移像素100(可以修改),抽取原始图片像素点填补平移后空白区域;
    Image_rotate:
    #旋转图片,随机从rotate_angle列表中抽取旋转角度
    Image_noise:
    #添加噪声,随机选择高斯噪声或椒盐噪声;且高斯噪声的方差与椒盐噪声的比例都是随机抽取;
# -*-coding = utf-8 -*-
"""
1. Image_flip:翻转图片
2. Image_traslation:平移图片
3. Image_rotate:旋转图片
4. Image_noise:添加噪声
"""
import os
import cv2
import numpy as np
from random import choice
import random

def Image_flip(img):
    """
    :param img:原始图片矩阵
    :return: 0-垂直; 1-水平; -1-垂直&水平
    """
    if img is None:
        return
    paras = [0, 1, -1]
    img_new = cv2.flip(img, choice(paras))
    return img_new

def Image_traslation(img):
    """
    :param img: 原始图片矩阵
    :return: [1, 0, 100]-宽右移100像素; [0, 1, 100]-高下移100像素
    """
    paras_wide = [[1, 0, 100], [1, 0, -100]]
    paras_height = [[0, 1, 100], [0, 1, -100]]
    rows, cols = img.shape[:2]
    img_shift = np.float32
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值