数论基础知识

质数

1.质数的判定——试除法

O ( n ) O(n) O(n)

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i < x; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

性质1:如果 d ∣ n d|n dn ,那么 n d ∣ n \frac{n}{d}|n dnn

因为一个数的约数是成对出现的,因此在判断约数的时候只需要枚举较小的约数。

O ( n ) O(\sqrt{n}) O(n )

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

2.分解质因数——试除法

O ( n ) O(n) O(n)

for (int i = 2; i <= n; i ++)
    if (n % i == 0)
    {
        int s = 0;
        while (n % i == 0)
        {
            n /= i;
            s ++;
		}
        cout << i << ' ' << s << endl;
    }

优化: n n n中最多只包含一个大于 n \sqrt{n} n 的质因子
O ( n ) O(\sqrt{n}) O(n )

for (int i = 2; i <= n / i; i ++)
    if (n % i == 0)
    {
        int s = 0;
        while (n % i == 0)
        {
            n /= i;
            s ++;
		}
        cout << i << ' ' << s << endl;
    }
if (n > 1) cout << n << ' ' << 1 << endl;

3.筛法

埃氏筛 O ( n log ⁡ log ⁡ n ) O(n\log\log{n}) O(nloglogn)

质数定理: [ 1 , n ] [1, n] [1,n] 中有 n ln ⁡ n \frac{n}{\ln{n}} lnnn 个质数

int primes[N], cnt;     // primes[]存储所有素数
bool vis[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (vis[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i)
            vis[j] = true;
    }
}
欧拉筛(线性筛) O ( n ) O(n) O(n)
int primes[N], cnt;     // primes[]存储所有素数
bool vis[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!vis[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            vis[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

约数

1.试除法求一个数的所有约数

vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

2.约数个数

x = p 1 a 1 ∗ p 2 a 2 ∗ p 3 a 3 . . . ∗ p k a k x = p_{1}^{a_1} * p_{2}^{a_2} * p_{3}^{a_3}... * p_{k}^{a_k} x=p1a1p2a2p3a3...pkak,则其约数个数为: n = ( a 1 + 1 ) ∗ ( a 2 + 1 ) ∗ . . . ∗ ( a k + 1 ) n = (a_1 + 1) * (a_2 + 1) * ... * (a_k + 1) n=(a1+1)(a2+1)...(ak+1)


3.约数之和

x = p 1 a 1 ∗ p 2 a 2 ∗ p 3 a 3 . . . ∗ p k a k x = p_{1}^{a_1} * p_{2}^{a_2} * p_{3}^{a_3}... * p_{k}^{a_k} x=p1a1p2a2p3a3...pkak,则其约束之和为: s u m = ( p 1 0 + p 1 2 + . . . + p 1 a 1 ) ∗ ( p 2 0 + . . . + p 2 a 2 ) ∗ . . . ∗ ( p k 0 + . . . + p k a k ) sum = (p_1^0 + p_1^2 + ... +p_1^{a_1})*(p_2^0 + ... + p_2^{a_2})*...*(p_k^0 + ... + p_k^{a_k}) sum=(p10+p12+...+p1a1)(p20+...+p2a2)...(pk0+...+pkak)


4.欧几里得算法(辗转相除法)

原理: g c d ( a , b ) = g c d ( b , a % b ) gcd(a, b) = gcd(b, a\%b) gcd(a,b)=gcd(b,a%b)

证明: a % b = a − ⌊ a b ⌋ ∗ b a\%b = a - \left \lfloor \frac{a}{b} \right \rfloor * b a%b=abab, 令 c = ⌊ a b ⌋ c = \left \lfloor \frac{a}{b} \right \rfloor c=ba,因此 a % b = a − c ∗ b a \% b = a - c * b a%b=acb,即只需要证明 g c d ( a , b ) = g c d ( b , a − c ∗ b ) gcd(a, b) = gcd(b, a - c * b) gcd(a,b)=gcd(b,acb)

①:左式,对于 ∀ d , 有 d ∣ a 且 d ∣ b , 则 d ∣ ( a − c ∗ b ) \forall{d},有d|a且d|b,则d|(a - c*b) ddadbd(acb)

②:右式,对于 ∀ d , 有 d ∣ b 且 d ∣ ( a − c ∗ b ) , 则 d ∣ b \forall{d},有d|b且d|(a-c*b),则d|b ddbd(acb)db

因此 g c d ( a , b ) = g c d ( b , a % b ) gcd(a,b) = gcd(b,a\%b) gcd(a,b)=gcd(b,a%b)

int gcd(int a, int b)
{
    return b ? gcd(b, a%b) : a;
}

欧拉函数

欧拉定理

求欧拉函数

定义

φ ( n ) \varphi{(n)} φ(n)表示在 [ 1 , n − 1 ] [1,n-1] [1,n1]中与n互质的数的个数(互质: g c d ( a , b ) = 1 gcd(a, b) = 1 gcd(a,b)=1)

求法

x = p 1 a 1 ∗ p 2 a 2 ∗ . . . ∗ p k a k x = p_1^{a_1}*p_2^{a_2}*...*p_k^{a_k} x=p1a1p2a2...pkak,则 φ ( x ) = x ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) . . . ∗ ( 1 − 1 p k ) \varphi{(x)} = x*(1-\frac{1}{p_1})*(1 - \frac{1}{p_2} )...*(1-\frac{1}{p_k}) φ(x)=x(1p11)(1p21)...(1pk1)

证明

利用容斥原理证明:

模板
int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);//先除再乘防止溢出
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);
    return res;
}

筛法求欧拉函数(基于线性筛)

证明:
模板
int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉
void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

快速幂

模板
求 m^k mod p,时间复杂度 O(logk)int qmi(int m, int k, int p)
{
    int res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}

快速幂求逆元

乘法逆元定义
费马定理

参考:同余式整除


扩展欧几里得算法

裴蜀定理

定义

对于任意正整数 a , b a, b a,b,一定存在非零整数 x , y x, y x,y使得 a x + b y = g c d ( a , b ) ax + by = gcd(a, b) ax+by=gcd(a,b)

证明

扩展欧几里得算法

在扩展欧几里得算法中,我们得到的 x , y x, y x,y不唯一,但是得到一组 x , y x, y x,y的值之后,就可以表示出所有的 ( x , y ) (x, y) (x,y)

// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1; y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a/b) * x;
    return d;
}

高斯消元

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值