遥感影像监督分类是一种常见的遥感数据处理方法,可以将遥感影像像素分配到不同的地物类别中。在ArcGIS软件中,我们可以使用最大似然法(Maximum Likelihood)来进行遥感影像监督分类。本文将详细介绍如何在ArcGIS中应用最大似然法进行遥感影像监督分类,并提供相应的源代码。
-
数据准备
首先,我们需要准备用于监督分类的遥感影像数据和相应的训练样本数据。遥感影像数据可以是多光谱影像或高光谱影像,训练样本数据包括每个地物类别的代表性样本。 -
创建训练样本
在ArcGIS中,我们可以使用“样本工具集”(Sample Tools)创建训练样本。打开“样本工具集”工具箱,选择“创建样本”工具。在工具参数中,选择输入的遥感影像,选择输出的样本数据库,并指定训练样本的类别和位置。根据实际情况,可以创建多个类别的训练样本。 -
训练分类器
在ArcGIS中,最大似然法是通过“训练样本生成签名”工具来实现的。打开“遥感工具集”(Spatial Analyst Tools),选择“遥感分类”工具集,然后选择“训练样本生成签名”工具。在工具参数中,选择输入的遥感影像,选择输入的训练样本数据库,并指定输出的签名文件。运行该工具后,将根据训练样本生成地物类别的统计信息。 -
执行监督分类