ArcGIS应用于遥感影像监督分类:最大似然法

79 篇文章 ¥59.90 ¥99.00
本文介绍了如何在ArcGIS中利用最大似然法进行遥感影像监督分类,包括数据准备、创建训练样本、训练分类器和执行监督分类的详细步骤,并提供了Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遥感影像监督分类是一种常见的遥感数据处理方法,可以将遥感影像像素分配到不同的地物类别中。在ArcGIS软件中,我们可以使用最大似然法(Maximum Likelihood)来进行遥感影像监督分类。本文将详细介绍如何在ArcGIS中应用最大似然法进行遥感影像监督分类,并提供相应的源代码。

  1. 数据准备
    首先,我们需要准备用于监督分类的遥感影像数据和相应的训练样本数据。遥感影像数据可以是多光谱影像或高光谱影像,训练样本数据包括每个地物类别的代表性样本。

  2. 创建训练样本
    在ArcGIS中,我们可以使用“样本工具集”(Sample Tools)创建训练样本。打开“样本工具集”工具箱,选择“创建样本”工具。在工具参数中,选择输入的遥感影像,选择输出的样本数据库,并指定训练样本的类别和位置。根据实际情况,可以创建多个类别的训练样本。

  3. 训练分类器
    在ArcGIS中,最大似然法是通过“训练样本生成签名”工具来实现的。打开“遥感工具集”(Spatial Analyst Tools),选择“遥感分类”工具集,然后选择“训练样本生成签名”工具。在工具参数中,选择输入的遥感影像,选择输入的训练样本数据库,并指定输出的签名文件。运行该工具后,将根据训练样本生成地物类别的统计信息。

  4. 执行监督分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值