图像分类
图像分类是指利用计算机将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或者其他信息,按照某种规则或者算法划分为不同的类别。目前大部分相关书籍和课程介绍遥感图像分类都采用ENVI、ERDAS等软件,分类方法也多采用平行六面体、最小距离、最大似然等。而实际上,ArcGIS提供的遥感图像分类模块已经相当成熟,支持所有主流的分类方法,如最大似然、支持向量机。本篇文章中,我们将为大家介绍在ArcGIS 10.8中使用随机树(Random Trees)分类器和最大似然分类器(Maximum Likelihood)进行遥感图像分类,不同分类方法操作相似,只需更换分类器即可。
数据源
以哨兵2号L2A数据产品为数据源,可从东北亚资源环境大数据中心(http://www.igadc.cn/)获取。轨道号为N0207_R089_TVF,拍摄时间2019年6月23日,如图1所示,该地区所属行政区为辽宁省盘锦市。
分类方法与样本选择
随机树是一种机器学习分类器,它基于大量决策树的执行,每个树变量子集的随机选择,以及将最常用的树输出用作整体分类。在ArcGIS中使用随机树进行分类,首先需要绘制训练样本,同其他分类方法一样,样本文件格式一般为shpfile(也可