熬了一宿,为大家整理出来Flink on Yarn的三种部署方式,详细介绍,不仅仅皮毛哦

🍬博主介绍
👨‍🎓 博主主页:喵的主页
✨主攻领域:【大数据】【java】【python】【面试分析】


1. Session模式

这种模式会预先在yarn启动一个flink集群,然后将任务提交到这个集群上,这种模式,集群中的任务使用相同的资源,如果某一个任务出现了问题导致整个集群挂掉,那就得重启集群中的所有任务,这样就会给集群造成很大的负面影响。
在这里插入图片描述
在这里插入图片描述

特点:需要事先申请资源,使用Flink中的yarn-session(yarn客户端),启动JobManager和TaskManger

  • 优点:不需要每次递交作业申请资源,而是使用已经申请好的资源,从而提高执行效率

  • 缺点:作业执行完成以后,资源不会被释放,因此一直会占用系统资源

应用场景

适合作业递交比较频繁的场景,小作业比较多的场景

2. Per-Job模式

考虑到集群的资源隔离情况,一般生产上的任务都会选择per job模式,也就是每个任务启动一个flink集群,各个集群之间独立运行,互不影响,且每个集群可以设置独立的配置。
在这里插入图片描述
在这里插入图片描述

特点:每次递交作业都需要申请一次资源

  • 优点:作业运行完成,资源会立刻被释放,不会一直占用系统资源
  • 缺点:每次递交作业都需要申请资源,会影响执行效率,因为申请资源需要消耗时间

应用场景

适合作业比较少的场景、大作业的场景

3. application模式

3.1. 背景

flink-1.11 引入了一种新的部署模式,即 Application 模式。目前,flink-1.11 已经可以支持基于 Yarn 和 Kubernetes 的 Application 模式。

Session模式:所有作业共享集群资源,隔离性差,JM 负载瓶颈,main 方法在客户端执行。
Per-Job模式:每个作业单独启动集群,隔离性好,JM 负载均衡,main 方法在客户端执行。

在这里插入图片描述
注意 : 三角形 正方形 它们的位置,现在在Deployer

通过以上两种模式的特点描述,可以看出,main方法都是在客户端执行,社区考虑到在客户端执行 main() 方法来获取 flink 运行时所需的依赖项,并生成 JobGraph,提交到集群的操作都会在实时平台所在的机器上执行,那么将会给服务器造成很大的压力。尤其在大量用户共享客户端时,问题更加突出。
此外这种模式提交任务的时候会把本地flink的所有jar包先上传到hdfs上相应的临时目录,这个也会带来大量的网络的开销,所以如果任务特别多的情况下,平台的吞吐量将会直线下降。
因此,社区提出新的部署方式 Application 模式解决该问题。

3.2. 原理

在这里插入图片描述
注意 : 三角形 正方形 它们的位置,现在在JM

Application 模式下,用户程序的 main 方法将在集群中而不是客户端运行,用户将程序逻辑和依赖打包进一个可执行的 jar 包里,集群的入口程序 (ApplicationClusterEntryPoint) 负责调用其中的 main 方法来生成 JobGraph。Application 模式为每个提交的应用程序创建一个集群,该集群可以看作是在特定应用程序的作业之间共享的会话集群,并在应用程序完成时终止。在这种体系结构中,Application 模式在不同应用之间提供了资源隔离和负载平衡保证。在特定一个应用程序上,JobManager 执行 main() 可以节省所需的 CPU 周期,还可以节省本地下载依赖项所需的带宽。

CDH是一种大数据处理平台,而Flink是一种流处理框架,这里讲述了如何使用CDH平台来部署FlinkYARN上。 首先,将Flink的二进制文件下载到CDH集群的一个节点上。然后,在Flink的conf目录中,编辑flink-conf.yaml配置文件。在该文件中,需要确保以下配置项正确设置: 1. flink.yarn.execution-mode: 设置为yarn-session,表示将Flink作为YARN上的一个会话运行。 2. yarn.application.name: 设置一个适当的名称,用于在YARN资源管理器中显示。 3. yarn.queue: 设置为YARN调度队列的名称,以确定Flink的调度优先级。 4. yarn.container.memory-mb: 设置每个Flink任务容器(TaskManager)的内存大小,以MB为单位。 5. yarn.container.vcores: 设置每个Flink任务容器(TaskManager)的虚拟内核数。 接下来,在CDH集群上启动一个YARN会话来运行Flink。输入以下命令: ``` ./bin/yarn-session.sh -n <number_of_taskmanagers> ``` 其中,`<number_of_taskmanagers>`表示要启动的Flink任务管理器(TaskManager)的数量。这将创建一个YARN应用程序,运行Flink并分配所需的资源。 一旦Flink会话在YARN上成功启动,就可以通过Web界面或Flink命令行工具来监控和管理任务。 需要注意的是,在CDH上部署Flink时,确保所使用的Flink版本与CDH版本兼容。此外,在配置Flume、Kafka等外部数据源时,也要根据具体需求进行相应的配置。 总结来说,通过正确配置Flink的运行模式、资源分配和调度优先级,然后在CDH集群上启动FlinkYARN会话,即可实现FlinkYARN上的部署。这样可以充分利用CDH平台的资源管理和任务调度功能,来处理大规模的流数据。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chad__chang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值