工业物联网IIoT环境下,为边缘计算提供的基于区块链的机械学习安全框架

摘要
在工业物联网(IIoT)中,边缘服务为信息的实时传输和快速处理提供了一种有效且优越的手段。但随着智能设备数量的不断增加,导致隐私泄露和边缘服务模型精度不足。为了解决这些挑战,在本研究中,本文提出了一个在IIoT 基于区块链的边缘服务机器学习框架(BML-ES)。具体而言,本文构建了新型智能合约,鼓励多方参与边缘服务,以提高数据处理效率。

工业物联网导论

随着信息技术和5G无线通信的快速发展,现代工业需要尽可能多的智能设备实时处理数据并反馈结果,实现工业智能化。工业物联网(IIoT)通过将智能设备应用和部署到数据采集、传输、处理和存储的各个方面,实现智能计算和高效数据处理。例如,在智能交通系统中,智能设备通过感知路况信息和实时车辆状态,为用户提供导航信息和紧急避障。如果无法保证实时数据处理和用户隐私,对手就会篡改隐私数据,造成交通网络事故,甚至危及人身安全。因此,在工业物联网中,利用边缘服务来确保智能设备的可靠传输和实时数据处理是一项至关重要的要求。
在工业物联网的推动下,智能设备的数量正在迅速增加。目前迫切需要一种技术来解决智能设备和云服务之间的数据处理效率问题。边缘服务是一种新的计算范式,将云资源和服务扩展到网络边缘,通过部署边缘服务为智能设备提供虚拟化服务。近年来,边缘服务在智能城市、联网自动驾驶汽车和移动边缘人群感知等应用领域得到了广泛的发展。边缘服务可以为工业物联网提供更强大的数据处理能力,增强智能设备的实时数据计算,提高智能生产和智能制造的效率。通过部署边缘服务,不仅可以实现智能设备之间的实时通信,还可以对智能产业化决策做出即时响应。

为了实现数据的实时处理和及时响应,机器学习被应用到边缘业务的多个场景中。在工业物联网领域,机器学习算法的出现可以帮助智能设备进行实时数据学习和模型训练。智能设备在工业物联网中收集大量数据。这些数据使用机器学习算法(如SNN、SVM)训练模型,通过智能设备实现实时数据处理和决策。 智能设备对数据的不断采集有助于学习模型的及时更新。因此,越来越多的机器学习算法被用于工业物联网的实时数据处理和资源分配。虽然机器学习可以通过训练模型提高预测精度,但由于智能设备的存储和计算资源有限,智能设备使用机器学习构建的模型不能适应更高的精度要求,容易出现隐私泄露。因此,如何有效地设计模型并采用机器学习能力来提高数据处理的准确性是一个很大的挑战。

此外,在通过机器学习进行数据处理的安全性和效率方面仍然存在巨大的矛盾。一方面,由于智能设备的计算和存储资源有限,大量的加解密计算带来巨大的开销。另一方面,随着异构智能设备的大量接入,数据处理任务的类型变得越来越复杂。区块链技术已成为确保数据安全和隐私的重要手段。区块链技术本身的去中心化、透明性和不可篡改性确保了数据处理的公平性和真实性。因此,本文采用机器学习算法和区块链技术来提高数据处理的效率,保证数据处理的安全性。将这两种方法相结合,解决了工业物联网中边缘服务的安全性与效率之间的矛盾。但是,现有的一些解决方案仍然存在一些不足,主要有以下几点:
(1)智能设备收集的大量数据集的利用率很低,边缘服务不能及时响应决策。
(2)智能设备数量巨大。一旦存在恶意节点,就无法保证数据的安全性和隐私性。
(3)机密数据的传输和加密计算导致了巨大的开销。
在这里插入图片描述
如图1所示,在工业物联网边缘服务场景下,智能设备无法实时处理数据并做出智能决策。因此,需要云服务器在收集大量数据后进行响应,这大大增加了网络带宽和时延,在数据处理中无法保证数据的安全性和私密性。为了克服这些限制,本文提出了一种IIoT环境中的基于区块链的边缘服务机器学习框架(BML-ES)。使用区块链代替云服务器作为可信的第三方来减少边缘服务响应的延迟。此外,区块链中的智能合约被设计为鼓励智能设备的激励机制参与计算任务,提高数据处理效率。此外,区块链中的矿工整合了正确计算的验证结果,以确保模型的真实性和准确性。本文的具体贡献如下:

  • 提出了一个基于区块链的分布式多方机器学习框架,以提高边缘服务上的多方学习模型的准确性。并构建新型智能合约,设计奖惩激励机制,鼓励多方参与边缘服务,提高数据处理效率。此外,契约保护了多个参与方的利益,实现了多个参与方之间的激励相容。
  • 提出了尺寸加权聚合策略(size-weighted aggregation strategy, SWAS)来验证和整合模型参数以提高模型的准确性,并采用SM2公钥密码体制来防止边缘服务中模型参数的隐私泄露。理论分析和仿真实验表明,该方法不仅能有效地保护数据安全,而且对工业物联网的边缘业务具有较低的开销。

新兴的工业互联网技术与智能生产

为了实现工业物联网的智能生产和自主控制,有许多方法已经引起了学术界和工业界的广泛关注。这些解决方案主要可以分为三种方法:机器学习、区块链和边缘计算。

机器学习核心内容
Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehiclesLu等人提出了一种基于联邦学习的新架构,以减少传输负载,解决提供商的隐私问题。该方案利用区块链和深度强化学习提高了数据学习的效率,同时保证了数据共享过程的可靠性。
Blockchain-based federated learning for device failure detection in industrial iotZhang等人介绍了一种基于区块链的联邦学习方法,用于工业物联网设备故障检测。该解决方案可以防止敏感业务数据的泄漏,并可以验证数据的完整性。
Blockchained on-device federated learningKim等提出了区块链联合学习架构,该架构使用区块链网络代替中央服务器,并提供验证和相应的激励机制。作者通过调整块生成速率来最小化延迟。
Poster: A reliable and accountable privacypreserving federated learning framework using the blockchainAwan等人指出了一个基于区块链的隐私保护联合学习框架,该框架使用区块链的不可变性和去中心化信任属性来提供模型更新的起源。
“When federated learning meets blockchain: A new distributed learning paradigmMa等人描述了一个区块链辅助的联邦学习框架。该框架使用区块链代替中央服务器,防止恶意终端毒害学习过程,并提供激励机制。
“Blockchain and federated learning for privacy-preserved data sharing in industrial iotLu等人提出了一种适用于工业物联网的数据安全共享架构。该体系结构结合了联邦学习和区块链技术,将数据共享问题转化为机器学习问题,保证了数据共享过程的效率和私密性。
区块链核心内容
Edge-based blockchain architecture for event-driven iot using hierarchical identity based encryptionPavithran等人[32]在基于区块链的物联网架构中使用了基于层次身份的加密来保护数据隐私
A blockchain-based trusted data management scheme in edge computingMa等人提出了一种基于区块链的边缘计算可信数据管理方案,该方案支持基于矩阵的多通道数据段和隔离,保护私有数据。
Cooperative computation offloading and resource allocation for blockchain-enabled mobile-edge computing: A deep reinforcement learning approachFeng等利用区块链技术保证了移动边缘计算系统中数据的可靠性和不变性,设计并优化了区块链和移动边缘计算的性能
Decchain: A decentralized security approach in edge computing based on blockchainBonnah等使用区块链代替可信实体的认证,在边缘计算中实现隐私保护和数据安全。
Blockchainenabled distributed security framework for next-generation iot: An edge cloud and software-defined network-integrated approachMedhane等人提出了一个使用边缘云和软件定义网络的支持区块链的分布式安全框架(SDN)。该框架可以快速识别和检测安全攻击,保护数据的机密性
Joint resource allocation and incentive design for blockchain-based mobile edge computingSun等用区块链技术实现了一个去中心化、不间断、安全、公平的资源分配共识机制,实现了区块链驱动的移动边缘计算中的激励和跨服务器资源分配进入
Optimizing task assignment for reliable blockchain-empowered federated edge learningKang等将声誉管理和区块链技术相结合,提出了一个多对一的任务匹配模型,以保证联合边缘学习的可靠性
边缘计算核心内容
Integrated blockchain and edge computing systems: A survey, some research issues and challenges区块链技术与边缘计算的结合可以保护工业物联网中的数据隐私,并提供激励机制
Flchain: Federated learning via mecenabled blockchain networkMajeed等人将边缘计算和区块链网络相结合,提出了一个适合联邦学习的系统模型。该模型使用区块链网络代替中央服务器进行计算、验证和存储,比传统的联邦学习更健壮。
Towards blockchainbased reputation-aware federated learningRehman等人详细阐述了移动边缘计算网络中细粒度联邦学习的概念。摘要基于区块链的信誉感知联合学习的概念,在移动边缘计算系统中设计了一种可信的协作联合学习,以保证移动边缘计算系统中协作训练的可靠性。
Sharing incentive mechanism,task assignment and resource allocation for task offloading in vehicular mobile edge computingLe等将拍卖博弈、匹配理论和凸优化方法相结合,建立了两阶段激励机制和任务分配和资源分配方案,解决了车联网资源共享的有效性和效率。
An online incentive mechanism for collaborative task offloading in mobile edge computingLi等人讨论了移动边缘计算中协同任务卸载的激励机制设计,并提出了一种融合计算和通信资源分配的在线真实机制
Resource allocation with edge computing in iot networks via machine learningLiu等人通过机器学习的方法研究了物联网中边缘计算的资源分配问题。
Incentive mechanism for edgecomputing-based blockchainChang等考虑了基于边缘计算的区块链网络,利用Stackelberg博弈设计了一种激励机制,可以有效地鼓励智能设备加入区块链
Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theoryKang等将信誉机制与智能合约相结合,提出了一种有效的激励机制来提高联合学习模型的准确性。

在上述方案中,大多数模型都在不同程度上保护了数据的保密性和完整性,但忽略了模型在智能设备中的准确性。在BML-ES框架中,大量智能设备支持边缘服务,既保护了数据隐私,又提高了决策树学习模型的准确性。

问题分析

在这里插入图片描述

在本文中,每个参与训练方都有自己的数据集,并根据自己的数据集训练局部模型。利用区块链来验证和整合来自每个参与者的本地模型参数来完成任务发布者的要求,从而提高智能设备模型的准确性。考虑1个任务发布者和N个任务训练。对于N个任务训练器,它们都有各自的局部数据集Di = (d1, d2,···,dn)。当发布任务时,任务训练者根据任务的要求和类型决定是否进行训练,并训练自己的数据集,以获得本地模型参数Mi。 然后,所有与请求相关的任务训练器将Mi提交给矿工,任务训练器在此过程中防止其本地数据集的泄漏。最后,通过对局部模型参数Mi的接受和验证,矿工使用SWAS聚合策略获得全局模型,并将训练奖励给予参与训练任务的任务训练者。在表1中列出了常用的货币变量和数字符号及其描述。在智能合约中使用了这些变量,其中货币变量应该是非负的。

BML-ES Framework

在这里插入图片描述

基于图1的设计系统模型中工业物联网边缘业务场景。如图2所示,系统模型由区块链模型和机器学习模型组成。矿工是区块链上诚实和值得信任的节点。任务训练器根据发布的任务进行训练,并将局部模型参数提交给矿工,获得训练奖励。矿工验证本地模型,使用SWAS聚合策略完成全局模型的构建,然后获得挖掘奖励。任务发布者从区块链中获取全局模型。因此,BML-ES实现了三方的激励兼容性。系统模型包括以下三个实体:
(1)任务发布者:在区块链上以事务的形式发布需要培训的任务的人。任务发布者分别向智能合约提交培训奖励和报告奖励。
(2)区块链:本地模型参数由区块链网络中的矿工进行验证和聚合。此外,区块链收集这些参数作为审计记录,并存储任务发布事务和任务请求事务。
(3)Task trainer:有自己的数据集的人,可以依靠这些数据集进行独立的训练,通过提交正确的局部模型参数来获得训练奖励。此外,任务培训师向智能合约提交存款。

威胁模型

本文的目的是让没有训练能力的任务发布者能够获得足够准确的训练模型。在实际环境中,任务发布者和任务训练器被认为是恶意的。他们只想要培训模式或培训奖励,不想工作,甚至可能扰乱系统的运行。从上面的分析可以看出,系统模型容易受到以下威胁:
(1)训练参数的质量:恶意任务训练器可能会为训练提供质量偏倚的数据集,影响整个训练结果的准确性,降低数据的可用性。不仅如此,恶意的任务训练者甚至提供错误的参数来获得奖励。
(2)数据隐私:独立任务训练者不希望其他参与者得到自己的训练结果。恶意的任务训练者破坏了系统的运行,试图推断其他参与者的训练数据集,从而泄露了诚实的任务训练者的隐私。
(3)串通攻击:在任务培训员之间进行贿赂,恶意的任务培训员承诺将部分培训奖励给予诚实完成培训的任务培训员,以获取诚实培训员的培训结果供提交。这样,就有可能在没有训练的情况下获得任务发布者的训练奖励。

系统设计

在本节中,本文将详细描述BML-ES框架的构建,该框架由以下步骤组成。由于智能设备的有限的资源优势服务,本文设计的激励(奖励和惩罚)机制,一方面,鼓励任务训练者参与训练,另一方面,为了防止恶意的行为任务训练,同时使用密码学保护训练模型的隐私性。作为一个去中心化的不可修改的数据库,区块链被认为是存储任务发布和任务请求事务的数据库,矿工验证和集成训练模型以提高最终训练模型的准确性。

  1. 系统初始化[密钥对生成]。系统生成任务发布者TP的公私钥对 ( T P p k b , T P s k b ) (TP_{pkb}, TP_{skb}) (TPpkb,TPskb)和任务训练者 T L i = ( T L 1 , T L 2 , ⋅ ⋅ ⋅ , T L n ) TL_i = (TL_1, TL_2,···,TL_n) TLi=(TL1,TL2TLn)的公私钥对 ( T L i − p k b , T L i − s k b ) (TL_{i-pkb}, TL_{i-skb}) (TLipkb,TLiskb)。此外,旷工还需要生成它们的公私钥对 ( M i n e r p k b , M i n e r s k b ) (Miner_{pkb}, Miner_{skb}) (Minerpkb,Minerskb).

  2. 任务发布。TP使用区块链网络广播训练任务Task,该任务以事务的形式生成。该事务包含任务发布者ID、Date Type、Task description、Deadline、Mini aggregation和任务发布者的签名Sign。任务发布后,需要将TP提供的训练奖励Reward锁定在智能合约SC上,交易的详细形式如图3所示。
    在这里插入图片描述

  3. 任务请求。任务训练器TLi根据发布的任务、多个参与者的唯一标识ID和所有数据配置文件生成任务请求request,包括Data Type, Data distribution,Proposed completion time,以及任务训练器的签名Sign,以交易的形式传播。它被矿工记录并证实。提交任务请求后,TLi还将定金deposit 锁定到训练合同 SC中。交易的详细形式如图3所示。.

  4. 任务训练。矿工接受任务培训请求发送的任务训练,验证任务请求事务是否包括区块链,并检查任务发布者和训练者是否锁定SC的奖励和存款,如果验证是正确的,矿工任务培训消息发送到任务训练。任务训练者收到任务训练消息后,在本地开始训练,训练后将加密的模型参数提交给矿工

  5. 模型验证。任务训练器根据自己拥有的数据集在本地执行模型,并使用矿工的公钥对模型参数Mi进行加密,然后签名并发送给相应的矿工。矿工在收到任务训练器提交的加密模型参数后,对其进行验证和解密。当验证是正确的,矿工利用模型参数建立训练模型,并根据训练质量的证明划分训练模型的权重。当矿工接收到的正确模型参数个数满足最小聚合数T时,奖励根据权重进行分配。假设由任务训练器TLi提交的模型的精度的权重等于αi,他得到的奖励是Ri. 具体计算公式如下:
    在这里插入图片描述

  6. 块的一代。矿工在接收到T个正确的训练模型参数后,采用SWAS聚合策略构建全局模型,得到全局模型参数GM,构建完成后,利用任务发布者的公钥对全局模型参数进行加密,然后对加密的模型参数进行签名,生成用于全网广播的块。在每个节点验证区块的内容后,矿工将获得挖掘奖励。对于全局模型,ωi是对应任务训练器T Li所拥有的数据集的权重,且它们满足:
    在这里插入图片描述
    矿工计算下列方程式并将结果发送给区块链
    在这里插入图片描述

  7. 任务结束。任务发布者同步获取块内容,获取全局模型参数的密文,并使用如下公式解密密文
    在这里插入图片描述
    在本节中,设计并分析了BML-ES框架。首先,设计培训合同和报告合同,保护任务发布者和任务培训者的利益;此外,本文提出了培训质量的证明来分配任务培训师的奖励。最后,采用SWAS来提高全局模式的精度。

智能合约引入

智能合约是在区块链上存储和运行的计算机程序。程序代码捕获了双方签署合同条款的逻辑。代码的执行由事件触发,例如,事务被添加到区块链中。可以认为智能合约是由一个受信任的全局机器执行的,它可以临时托管资产并执行每条指令。
显然,存在以下关系:
(1) Ga > R.任务发布者在发布任务时应具有较高的盈利能力,否则,理性的任务发布者不会发布任务
(2) R ⋅ α i > C i R·α_i > C_i Rαi>Ci, 任务培训师的培训收益应大于培训成本,否则理性的任务培训师不会接受培训任务
(3) D T P > R + G a D_{TP} > R + Ga DTP>R+Ga。对于任务发布者,押金应该大于获得的收益,并扣留他的奖励作为补偿
(4) D T L i > C i + R ⋅ α i D_{TL_i} > C_i + R·α_i DTLi>Ci+Rαi。对于任务培训师,押金应大于培训费用,并扣留其奖励作为补偿
(5) ) R R > B C T L ) RR > BC_{TL} )RR>BCTL。 举报的报酬应大于恶意任务培训人员的贿赂成本,否则,理性的任务培训人员不会举报恶意任务培训人员

训练合同

训练控制: 培训合同由任务发布者和任务培训者签订,通过奖励的方式激励正确的任务培训。任务发布者需要提交定金和奖励到培训合同。任务培训师还需要将保证金提交到培训合同中。如果任务发布者是诚实的,定金会被退回,相反,定金会被扣留。如果任务培训师没有在规定的时间内提交模型参数或提交的参数错误,则任务培训师提交的保证金将不予退还。如果任务训练器在指定的时间内提交了正确的模型参数,任务训练器将获得任务发布者提交的奖励。培训合同如下
(1) T P与T Li之间签订培训合同。如果有任何争议,合同将被取消。
(2) T P设置T Li需要提交截止日期T1作为培训模型参数,双方设定培训合同有效截止日期T2。
(3) T P同意对每一位T Li正确、及时计算培训任务进行奖励。
(4) T P同意支付定金,定金由培训合同持有。
(5) T Li同意支付定金,定金由培训合同持有。
(6) T Li同意在本地进行任务训练,并提交模型训练参数供矿工选择和验证。
(7) T Li必须在时间T之前提交模型参数
(8) 在收到T Li提交的模型参数或截止日期T1已过后,培训合同采取以下措施:(a)如果T Li未提交模型参数,培训合同没收其定金DTLi;(b)如果T Li提交模型参数并正确验证,培训合同必须支付约定的奖励R·αi,并将定金DTLi返还给每个T Li; ©如果T Li提交的模型参数验证错误,培训合同将没收相应T Li的定金DTLi,并将R和DTP返还给TP
(9) T>T2且TP未作出回应或有争议的时候。那么对于在T2之前交付结果的任何TLi,培训合同必须向TLi支付约定的奖励R·αi,并退还其定金DTLi, TP提交的定金将被没收并转交给TLi

报告合同

在任务培训过程中,恶意的任务培训人员不进行任务培训,而是试图通过行贿获得诚实培训人员的结果,从而参与奖励的分配,从而影响整个系统培训模型的准确性。
签订报告合同是为了防止任务培训者之间串通。在报告契约中,诚实的任务训练者可以向任务发布者报告恶意任务训练者的行为。任务发布者与诚实的任务培训师签订报告合同后,任务发布者需要支付报告奖励,以鼓励正确的报告。当任务发布者收到报告消息后,将其发送给矿工。矿工根据报告消息验证恶意任务训练器。如果核实无误,报告合同将取消对恶意任务培训师的保证金,并将恶意任务培训师踢出团队。参与报告的任务培训师将获得报告合同的奖励。如果核实错误,即任务培训师谎报报告,则扣留恶意报告培训师的保证金,并将其踢出培训团队。报告合同设置如下
(1) T P与T Li签订报告合同. 如果有任何争议,合同将被取消。
(2)培训合同签订后,应签订报告合同。
(3) T P同意给予诚实的TLi汇报奖励,以使其正确、及时地汇报恶意的任务培训师。
(4) T P同意支付由报告合同持有的报告报酬。
(5) T P和T Li讨论报告合同的有效期限T3。
(6) T Li必须在提交模型参数时间T1之前与任务发布者签订报告合同
(7)报告合同收到TLi提交的报告信息后,采取以下措施:(a)对TLi报告的恶意任务培训师的行为进行核实。如果核实无误,报告合同将扣留恶意任务培训师提交的保证金,并将其踢出任务培训团队,同时将RR交给报告任务培训师;(b)如果核实失败,表明该记者是恶意的,报道合同将扣留该恶意记者提交的保证金,并将该恶意记者踢出任务培训团队。除了;©在T >T1之后,记者未将报告信息告知TP则表示记者恶意,报道合同将扣留恶意记者提交的定金,并将其踢出任务培训团队。
(8)如果T P在T > T3后没有回应或发生争议,则TP之前提交的报告奖励在T1之前将无条件移交给记者。

培训质量证明

在任务提交阶段,矿工不能保证上传参数的质量。低质量的参数会降低系统的性能,使它不可能建立最精确的模型。因此,懒惰或恶意的任务训练者会在模型参数提交阶段提交低质量甚至错误的模型参数。为了解决这一问题,本文提出了一种培训质量证明方案来验证任务培训师的培训模型,以识别这些不恰当的行为。不仅如此旷工也可以根据训练质量的证明给任务训练者分配训练奖励。
1)精度计算:矿工接收T Li提交的模型参数,根据Mi建立T Li的局部学习模型hi (x)。通过测试集计算不同任务训练器所构建模型的准确性。验证公式如下
在这里插入图片描述
其中,αi指示的准确性训练模型在测试集,N代表了测试集的总数,hi(x)表示使用Mi构造的训练模型i,Π意味着hi(x)的功能。当测试数据验证正确,Π的值是1,否则为0。
2) 出快:矿工接收T Li提交的T模型参数Mi。准确率计算完成后,矿工通过SWAS聚合策略构建全局模型参数GM。矿工收集T模型参数构建默克尔树,并与加密的全局模型Cm打包到区块链中,如图4所示。默克尔树的构建将诚实任务培训师的培训记录保存为审计。
在这里插入图片描述

3)区块链上:区块广播后,每个节点验证该区块的合法性,验证通过后将其添加到自己的账本中。

SWAS聚合策略

由于智能设备的资源和计算能力有限,自身训练的模型无法满足高精度的要求。因此,采用SWAS聚合策略整合多个局部学习模型参数。SWAS不仅扩展了数据集的范围,而且在获得高精度模型的同时提高了资源的有效利用率。
在通过训练质量的证明获得任务训练器模型的准确性后,矿工根据任务训练器自身的数据集大小计算权重,并利用它们获得全局模型。全局模型的计算公式如下在这里插入图片描述

其中ωi是对应的任务训练器TLi所拥有的数据集的权值,ωi≥0, 有ωi =1 ωi =1

算法

在这里插入图片描述

安全分析和正确性分析

本文采用区块链技术,在多方互不信任的情况下,建立智能设备培训的安全机制。作为一个分散的分布式分类账,区块链以默克尔树的形式记录每个任务训练器提交的加密的本地模型参数。任务训练器可以快速验证数据的完整性和真实性。在多方边缘模型的学习过程中,恶意的任务训练者或对手会窃取训练模型,甚至推测局部数据,导致隐私泄露。基于密码学和区块链技术,解决了第三节提出的威胁模型。

安全分析

BML-ES安全证明

在BML-ES中,采用SM2对模型参数进行加密和签名。任务训练者使用矿工的公钥对模型参数进行加密,然后使用自己的私钥对模型参数进行签名并发送给矿工。矿工在收到加密的模型参数后,需要验证验证任务训练器的签名是否正确。如果验证通过,则可以使用矿工的私钥解密得到模型参数。因此,BML-ES的安全性主要依赖于SM2中的椭圆曲线离散对数问题。

定理1:BML-ES是安全的。

证明:在该模型中,假设有对手A获取矿工公钥Minerpkb,加密模型参数M0。在多项式时间P下,对手解密模型获得明文的优势记为Adv (k),则
在这里插入图片描述

其中,negl(k)是一个存在的可忽略函数。
对手在获取加密模型参数后无法在多项式时间内解决椭圆曲线离散对数问题,因此无法解密任务训练器的模型参数,也无法从加密模型参数中推断出每个任务训练器的局部数据。同样,对手在获得加密的全局模型参数后也无法获得全局模型参数。

签名系统一般由KeyGen、Sign、Ver三种算法组成。KeyGen阶段,系统生成任务训练器(TLi-pkb、TLi-skb)的公钥和私钥,对手A伪造任务训练器的签名,将Sig (M、TLi-sh)发送给矿工进行验证。然后:
在这里插入图片描述
因此,对于对手,在多项式时间P下,对手伪造任务训练器签名的优势记为AdvSig (k),有
在这里插入图片描述
其中,negl(k)是一个存在的可忽略函数。
对手无法获得任务训练器的私钥,因此伪造的签名会被矿工检测到。同样,对手也无法伪造矿工们的签名

激励相容

:为了抵御合谋攻击,在BML-ES框架下提出了报告契约。当恶意的任务训练者要发动合谋攻击时,诚实的任务训练者会向任务发布者报告。由于任务发布者设定的报告奖励大于参与共谋攻击的任务培训者的收益,理性的任务培训者不接受恶意任务培训者的贿赂,而是将其报告给任务发布者以获得报告奖励。在此约束下,恶意的任务训练者发动串谋攻击不仅会被举报,但他们提交的保证金也将被扣留并踢出训练团队。因此,作为理性的参与者,任务训练者不会在自发起合谋的收益低于诚实训练所获得的回报时发起合谋攻击。
任务训练完成后,诚实的任务训练者得到任务发布者提供的训练奖励,矿工得到挖掘奖励,任务发布者得到期望的训练模型。任何一方的恶意行为都不能比诚实行为带来更高的利益,从而实现了参与者的激励兼容性,保证了方案的正确性。

定义1:激励相容是指个体追求利益的理性行为与实现集体利益最大化的目标是一致的。
定理2:BML-ES具有激励兼容性
证明:假设有一个恶意的任务培训师T LA,他贿赂了诚实的任务培训师T LB,并承诺将获得的部分培训奖励给T LB。由于T LA和T LB是合理的,它们分别计算如下收益方程
在这里插入图片描述

因此,合理的任务培训师不接受贿赂,而是举报恶意的任务培训师以获得更多的利益。这意味着没有任务训练师对BML-ES发动合谋攻击。
对于理性的任务发布者,他计算了以下等式:
在这里插入图片描述
研究发现,恶意任务发布者的损失大于模型带来的收益。因此,当任务发布者发布训练任务时,他不会攻击方案。矿工只有诚实地完成了模型参数的验证和聚合,才能获得奖励。因此,矿工们不会对BML-ES发起攻击,否则利润将为零。

正确性分析

(1)模型的质量。单个边缘设备的资源有限,训练模型的准确性较差,不能满足任务发布者的要求。为此,提出了训练质量证明和SWAS聚合策略。为了防止任务训练器懒惰训练甚至提交恶意数据,本文使用训练质量证明对局部模型进行验证,去除恶意任务训练器,保证参与最终聚合的模型参数的质量,从而提高全局模型的准确性。
(2)数据处理。在BML-ES框架中,为了保证数据处理的正确性,本文采用了奖惩机制和加密技术。整个任务训练过程的模型传输采用SM2加密传输,防止数据泄露和篡改。在任务培训过程中,奖惩机制保证了任务培训者不会破坏数据的正确性,因为这样会损失他们的利润。矿工是诚实可信的节点,能够正确验证任务训练器的结果。综上所述,BML-ES框架可以保证数据处理的正确性。
(3)隐私隔离。本文允许任务培训师在本地进行培训,而不需要将数据集集成到云中。在培训过程中,每个任务培训师都是相互独立的,无法看到培训行为,也无法猜测其他参与者的数据。在本文的框架中,任务训练者只需向矿工提交加密的模型参数,就可以消除云服务器泄露参与者数据的风险,防止恶意的任务训练者窃取模型参数,通过模型参数猜测数据。本文保护任务训练者数据的隐私,使互不信任的参与者能够积极参与训练,提高模型的准确性。
(4)审计记录。由任务训练器提交的加密模型参数被矿工以默克尔树的形式记录在区块链中。默克尔树是一种基于哈希结构的树。它确保数据不会被篡改,并可以快速验证数据是否在集合中。任务训练者可以通过验证路径快速检查他们提交的模型参数是否包含在区块链中。任务培训师诚实完成培训任务的次数越多,记录越多。只有通过默克尔树结构验证的任务训练者才能得到任务发布者的奖励。当任务训练器验证他们的模型参数包含在默克尔树中但没有收到奖励时,他们可以通过区块链中的记录进行审计。

性能评估

模拟参数

本文模拟的编程语言工具是Matlab和Spyder。本文模拟8个智能设备,它们有自己的数据集,可以独立构建决策树模型。本文在8台智能设备上模拟891条数据,计算每个智能设备独立训练模型所消耗的时间。此外,本文还计算了每个智能设备训练的决策树模型的准确性。接下来,本文还使用Remix编程智能合约,并计算构建两个智能合约所需的GAS。此外,还计算了使用SM2公钥加密系统对模型参数进行加密的操作开销。
本文在Windows10上进行了大量的模拟,硬件配置如下:Intel Core i5- 7500U@3.40GHz CPU, 8GB RAM, 1TB硬盘,Matlab R2016b,解释器Python3.8.5, Remix。本文分析和评估了BML-ES框架的性能和成本,并给出了以下实验结果。

本地训练

在这里插入图片描述
本文在智能设备上模拟不同的数据集,智能设备使用自己的数据集来构建决策树模型。本文计算每个智能设备构建模型所花费的时间,如图5所示。本文可以观察到,智能设备拥有的数据集越多,训练模型所需的时间就越长。为了比较,本文也准备了相同数量但不同类型的数据集进行对比实验,如图5所示。结果表明,智能设备的训练时间随数据集类型的不同而变化。.

准确度

在这里插入图片描述

本文使用数据集1对每台智能设备构建的决策树模型进行测试,得到模型在每台智能设备上的准确性,如图6所示。可以看出,当智能设备上有更多的数据集时,所建模型的精度可能并不会更高。因为在实际环境中,模型的准确性与数据集的处理和智能设备的计算资源有关。因此,单个智能设备训练的模型在一定程度上不能满足任务发布者的要求。为了缓解这一挑战,本文使用SWAS聚合策略得到全局模型,如图6所示。可以看出,全局模型避免了单一智能设备模型精度的高低。它提高了资源的利用率,也使模型的准确性更符合任务发布者的要求。此外,智能设备培训模型的准确性是激励机制设计中的一个重要因素。它被用作训练全局模型的权值。智能设备要想获得更高的利润,就必须提高计算能力,扩大数据利用率。

加密解密时间

在这里插入图片描述

为了保证任务训练器提交的模型参数的安全性,本文使用SM2对模型参数进行加密和传输。与传统的公钥密码体制相比,SM2作为数字签名具有更高的效率。由于不同的智能设备有不同的数据集,它们训练的模型参数也会随着数据集的增加而改变。本文模拟数据集的大小不同的智能设备,并由相应的智能设备计算加密和解密的时间开销模型参数的数据集,如图7中所示。本文可以观察到,随着数据集的扩大,模型参数的加解密时间不断延长。为了进一步对比,本文使用SM4进行了对比实验,如图7所示。可以看出,当数据集过大时,使用SM4加解密的时间要小于SM2。由于SM4拥有相同的加解密密钥,所以它的计算速度比SM2快,但SM4不能作为数字签名使用。

合同成本

本文使用Remix模拟培训合同和报告合同。在本文的实验中,本文假设一个任务发布者发起一个模型训练任务,智能设备接受这个任务,然后在收到消息后开始训练。任务发布者和任务培训者分别在合同中锁定培训奖励和存款。当任务训练器提交的模型参数得到正确验证,即契约的执行条件得到满足时,训练契约将锁定的奖励转移给任务训练器。相反,当模型参数验证不正确时,任务培训器提交的保证金将被转移到任务发布者的帐户。在报告合同中,本文假设存在恶意的任务培训器,诚实的任务培训器将其报告给任务发布者。如果任务发布者验证报告消息是正确的,报告契约将执行存款转移操作。一方面,任务发布者提交的报告奖励奖励给诚实的任务培训者;另一方面,恶意任务培训器提交的保证金被转移到任务发布者帐户。相反,如果举报信息有误,则将记者提交的保证金转入诚实的任务培训师账户,并返还任务发布者的举报奖励。
在这里插入图片描述

本文利用GAS计算了两份合同的成本,如表二所示。GAS是用来度量在以太坊区块链上执行特定操作所需的计算工作量的单位。在表二中,本文详细介绍了培训合同和报告合同的模拟功能。可以看出,部署培训合同和上报合同分别消耗550816 GAS和659557 GAS,而锁定培训合同和上报合同的奖励或存款只消耗171000 GAS。但执行培训合同转让需要33684 GAS,执行报告合同转让需要43346 GAS。本文是按照GAS和USD的汇率进行换算的,结果这个合同只消耗了很小的成本。

小结

本文提出了一种基于区块链的工业物联网边缘服务机器学习框架,解决了智能设备在资源有限的情况下对数据进行诚实处理的问题。安全性分析和仿真实验表明,提出的解决方案不仅保护了数据隐私,而且提高了工业物联网边缘服务的准确性。结合机器学习和区块链是一种有效的边缘服务数据处理方法。然而,如何降低通信开销还需要进一步的探索。

本文系对论文 “A Blockchain-Based Machine Learning Framework for Edge Services in IIoT” 的解读学习,翻译论文的核心内容的同时,补充解释论文中一些核心关键词并去掉冗余的相关研究。该论文为Q1论文,质量上佳。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chahot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值